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METHODS AND SOFTWARE ENGINEERING TOOLS FOR
SIMULATION OF ROBOT DYNAMICS

               J.AUZINSH, P.SLIEDE
              Riga Technical University
              1, Kalku Str., LV-1658
              Riga,  Latvia

ABSTRACT. Methods and appropriate engineers -oriented tools DINA and LMS have
been developed for the automated simulation of flexible robot dynamics, including those
with closed kinematic loops and changing structure. The typical example of such mecha-
nism is robot, performing assembly operations in industry or construction.

1. Introduction

The current trend is to leave to engineers the informal part of dynamic systems de-
signing process, namely, the problem formulation and interpretation of the results.
   The spatial mechanisms with closed loops, elastic bodies, one-sided constraints are
examined. The structure of mechanisms can change (putting on or removing of additional
geometric or kinematic constraints), if interaction with other objects takes place. Mecha-
nisms can contain complex systems of drive and control, which include digital and ana-
logue elements. The kinds of tasks to be solved include direct and inverse geometry,
kinematic and dynamic analysis as well as oscillation form and frequency analysis. To-
gether with well-known methods, such as constraint equations on the acceleration level
with stabilization, the recursive Newton-Euler algorithm etc., original approaches, which
allow to increase the simulation speed on both IBM PC's and parallel processing com-
puters, are implemented.

2. Used Methods

2.1. DYNAMIC MODEL IN THE IMPLICIT FORM

If we assume that q is a n-size vector-column of generalized coordinates of a mecha-
nism, then the equations of motion are of the form:

A q q B q q Q q q p t( )!! ( , !) ( , !, , ) ,+ − = 0                            (1)
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where A q( ) - n × n matrix of inertia; B q q( , !)  - vector-column of generalized gyroscopic
forces; Q q q p t( , !, , ) - vector-column of generalized applied forces; p - l - size vector of
driving system variables (currents, voltages, pressures etc.).
 The geometric constraints between bodies are of the form

f q i mi ( ) ( , , ..., ) .= =0, 1 2                                         (2)
Coordinates q can be displacements in translation or rotational pairs of mechanism

with tree structure, f - constraint equations for closing kinematic loops. Taking into con-
sideration of constraints together with the dynamic equations for an unconstrained system
(Newton-Euler equations for single bodies or equations of an unclosed branched kine-
matic chain) yield a differential-algebraic equation system, the solution of which involves
heavy problems of numeric stability (see [1]). Particular difficulties are encountered if
the constraints are one-sided, e.g., during the time of bodies meeting and separating. In
this case violation of constraints frequently occurs, which gives rise to tremendous accel-
erations and a process of in reality non-existing vibrations. Our practical experience sug-
gests that the constraints should preferably be assigned to the derivatives with a stability
according to Baumgarte [2]:
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                      (3a,b)

where  C
f

q
=

∂

∂
  -m×n Jacobi matrix of additional constraint equations (2);

      λ  - Lagrange multipliers - m - size vector of additional constraint forces;
      k k1 2,  - coefficients for constraints stabilization  [2].

The algorithms for developing an automatic dynamic model, which enable one to cal-
culate the left sides of the constraints equations (2), also allow to calculate their first and
second derivatives which are contained in equation (3), without using numerical differ-
entiation [3].

A traditional way to determine the movement is to find the matrices and vectors
A B C C Q f f, , , ! , , , ! and solve a set of n+m linear algebraic equations in regard to !!q  and
λ  by formalized description of kinematic scheme, if q q p, !,  are known. Such a procedure
must be performed repeatedly at each step of integration and this slows down the simula-
tion process. The idea to consider the equations of motion in their natural implicit form is
used in programs DINA and LMS :

H q q q p t( , !, !!, , ) = 0                                 (4)

where H
H

H

q

c
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 - left sides of the equations of motion and constraits.

 In the case of opened branched kinematic chains it is quite easy to calculate the discrep-
ancy of dynamic equations Hq and the discrepancy of additional equations Hc by the
recursive principle of Newton-Euler equations without calculation of A B C C, , , ! . It re-
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quires computing time proportional to n [3]. Using, for example, the absolute stable im-
plicit trapeze (Newmark) method for numerical integration:
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together with equations (4) gives us a set of non-linear equations in regard to  !!q i +1 and
λ i +1. (Index i means the values of variables at the i-th moment of time t t ih hi = +0 , -
step of integration). A Newton type iteration method can be used to solve those equa-
tions. Doing only one iteration in each step with k times less step proves more efficient
than doing k iterations. Thus we obtain the following formula of iteration :
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where S  is  (n+m)×(n+m) matrix
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It is also necessary to calculate matrices A H q C H qq c= =∂ ∂ ∂ ∂!! , !!,  but we need not do
it in every step of the integration, because the configuration of the mechanism changes
relatively slowly and, once calculated, matrix S in fact guarantees convergence of (6) for
at least further 100 steps of integration. Besides that we can take into account only the
great components of matrices∂ ∂H qq  and ∂ ∂H qq !  from the stiff springs and the
dampers in joints:
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  Thus S can be used in the form:
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where D1  and D 2  are diagonal matrices of the stiffness and the friction coefficients.
Moreover, the calculation of S has been reduced to inversion matrices A D D+ +1 2  and
C A D D C T( )+ + −

1 2
1 . Those are symmetric, positively definite matrices, hence in the

iteration process they can be replaced by their diagonals. It creates a possibility to do the
integration process simultaneously for all q , if !q  is a vector-column of generalized
speeds of a single unconstrained bodies system :

[ ]! , , , , , , ..., , , , , , .q v v v v v vT
x y z x y z Nx Ny Nz Nx Ny Nz= 1 1 1 1 1 1ω ω ω ω ω ω                (10)
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2.2. CONSIDERING THE FLEXIBILITY OF BODIES

Two techniques were used for considering body flexibility. The first approach is
based on the finite element (FE) method to describe, for example, the distributed elastic-
ity and inertia of flexible robot link. To obtain a simulation procedure demanding a rea-
sonable expenditure of computing resources, the following steps are proposed.
Decomposition of motion. The full motion of a mechanism is considered as consisting
of "rigid" one with superimposed "flexible" vibrational motion [4,5]. Description of the
"rigid" motion is obtained by recording displacements in joints qi , velocities and accel-
erations of bodies (links) ω εi i ia, ,  during simulation of rigid mechanism by program
LMS. "Flexible" motion is described as  additional displacements of FE model  nodes in
coordinate frames, connected with bodies in  "rigid" motion. Considering ni  linear and
angular displacements of the i-th body as vector ui  with components, small enough to
neglect some terms in expressions of inertia forces, caused by "rigid" transfer motions,
the "flexible" dynamics of a separate link is represented by linear equations:

M u C u Ri i i i i!! + =  , (11)
where M Ci i,  - constant matrixes of inertia and stiffness of the body's FE model, Ri - a
column-matrix of external loads, including inertia forces.
Reduction of FE model. As the size ni  of the system (11) usually is too large for practi-
cal use, the reduction of the model is necessary. Various reduction techniques have been
suggested, see [6,7], but fulfillment of the following demands for reduced models is still
actual:
1) the reduced equation system must be of minimal size mi , using as variables a set of
chosen displacements from unreduced FE model;
2) displacements in statics solution from applied forces Ri , inertia features of link as
solid body and first mi  eigenfrequencies and vibration modes (eigenvectors) must be
preserved in reduced model.
To fulfill these demands the approach, proposed in [10], is modified for enforced oscil-
lations [9]. The vector ui  is devided in retained part ui1 and omitted elastic freedoms
ui 2 . After transformation
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where Li i i= − −Φ Φ12 11
1  - matrix with the first mi  modal vectors of (11) as columns, the

system (11) may be presented in the form:
!! ;
!! .

y X y X y P
y X y P

i i i i i i

i i i i

1 11 1 12 2 1

2 22 2 2

+ + =
+ =  (13a,b)

As shown in [10], eigenvalues of X i11 correspond to mi  lower eigenfrequencies and
those of X i 22  - to n mi i−  higher ones of unreduced FE model. Usually frequency
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spectrum of Ri  is sufficiently lower as these n mi i−  frequencies of X i 22 . As a result
(13b) gives

y X Pi i i2 22
1

2≈ −  (14)
After returning to the variables ui  , the reduced model is obtained, which satisfies all
demands, formulated above:

M u K u R Ri i i i i i i!! 1 1 1 2+ = +Γ   , (15)
where expressions for K i  and Γ i  are the same obtained from the method of static con-
densation, but

M M M L M M Li i i i i i i i= − + −11 12 21 22Γ ( )   , (16)
Considerable advantage of proposed reduction procedure is the possibility to obtain Li ,
as shown in [8], by iterative solution of a Riccati matrix equation:

L G G L L G L Gi i i i i i i i11 22 12 21 0− − + = (17)
where

G M Ki i i= −1   . (18)
"Assembly" of complete mechanism model. A formalized algorithm and program
MON is developed to perform "assembly" of reduced models of links to obtain a model,
which describes displacements of a chain, consisting of rigid and flexible bodies, from
nominal "rigid" configuration, given by q i . Three constraints are imposed by each hinge
- coincidence of displacements of hinge elements central points. Relative angular dis-
placements in hinge appears as variables in complete model, one of them, µ i  is addi-
tional turning around the main axis of the hinge. As a result the model of the whole
mechanism is obtained in the form of a linear equations system with time - dependent
matrixes, determined by nominal position vector q  :

MU KU R F q q p p!! ( , ! ! , , ! )+ = + + +µ µ   , (19)

where F  is vector of torques of the drives.
Simulation. A special modification of the program LMS (named VMS) was developed
for simulation of the model (19). The proposed FE approach and programs were success-
fully used for simulation of a large scale space manipulator after testing by comparison
with results, obtained by in-cut fictitious joint method, described below as the second
technique.

If the mechanism contains elastic beam-shaped bodies, then it is rather expedient to
use the in-cut fictitious joint method by placing in them massless springs which simulate
the body's elasticity. This method has been long known in literature, in the report [10] the
term "superelement" is used to designate a combination of several such joints. For the
replacements and turnings of a beam length l  caused by forces applied to its ends in
statics to coincide with co-planar model of a beam, it is necessary to place into it two
fictitious joints at equal distances from its ends, by dividing it into parts of lengths a, b, a
(see Fig. 1.), a l= −( )1 1 12  .The stiffness of the springs placed in the joints has to
be c EI l= 2 . In this way 2m in-cut joints can be accommodated in the beam. In the
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spatial case of the model, joints have to be placed also along other axis perpendicular to
the beam, as well as the joints with axis along the beam for consideration of the torsion
deformation of the beam (see Fig. 2.). Such a model of the beam in statics coincides pre-
cisely with its FEM model.
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Fig. 1. Beam FE and rigid bodies model Fig. 2. Flexible robot model

A test was conducted in which the eigenfrequencies for a console were compared un-
der use of this method, of the "superelement" a l= 4  used in [10] and FEM with the
balanced inertia matrix. The method at issue, given an equal number of degrees of free-
dom (DOF), yields eigenfrequencies by one order more precise than FEM, with the ex-
ception just of the n-th frequency, which comes out somewhat more precise with FEM
(see Table 1.). The beam pendulum with the mass concentrated at the end [10], gave
analogous results.

Table 1.
DOF ω1  ω2   ω3

    A     B  FEM      A     B  FEM     A     B  FEM
2 1.01 6.08 .475 62.6 40.8 57.9     -      -      -
4 .018 1.45 .048 2.77 5.21 .848 16.4 7.49 80.4
6 .002 .641 .010 .222 2.25 .328 4.18 3.58 16.3
8 .0005 .359 .003 .44 1.26 .117 .597 2.03 1.45

10 .0001 .230 .002 .013 .801 .050 .161 1.30 1.17

Relative error % of beam eigenfrequencies.   A :  a=.221l;   B : a=.25l;  FEM: finite ele-
ment method with balanced inertia matrix.
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3. Software engineering tools and their applications

DINA and LMS are broadly used for simulation of robots, cranes, aerials, artificial
limbs etc. The unified pre- and postprocessors for all tools are used. Description of the
objects, tasks and results can be stored in data base. All tools run on IBM and compatible
PC under MS-DOS. DINA was successful in participating in the IAVSD organized tests
[11] by simulating the dynamics of a five point wheel suspension.

The in-cut joint method just considered was used for simulation by means of a LMS
program of a 3 DOF elastic robot (see Fig. 2.). Joints 1,2,15 are genuine joints, operative
in which are PID-controlled drives, but for the others in-cut joints with springs and ele-
ments of linear friction. The total number of DOF is 27. Fig.3. present the graphs of
some of the simulation results. Compared to the motion division method, the advantages
are that repeated simulation is not required and such elastic systems can be simulated, in
which the "hard" motion differs strongly from the elastic one. Because the deformations
appear just as generalized coordinates but not as displacement differences as it is in the
FEM models, smaller numeric rounding errors are obtained.

    Fig. 3. Robot arm deformations

4. Conclusions

1. The problem of inverse dynamics (obtaining the motion by the active forces) is not to
be reduced to calculation of the acceleration. Efficient algorithms can be obtained only if
the formation of the dynamics model involves the method of numeric integration.
2. If the algorithm is dominated mainly by the quantities which the constructors are inter-
ested in (the linear and angular coordinates of the bodies, the speeds and accelerations in
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the Cartesian coordinate system, the reactions and the driving forces in the joints, reac-
tions on the contact points of the bodies etc.) and each of them is calculated from the
quantities previously calculated by a minimum number of operations, the algorithm
should be considered as conditionally optimal.
3. Interface with the corresponding optimization and identification codes provide a wide
area of applications in calculations of controlled machine dynamics. Correspondingly
well -grounded engineers decisions can be made with relatively low involved expenses.
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