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Abstract.  This paper presents an efficient approach for vibration response optimization in
the case of absence of pronounced optimization criteria. Simultaneously a great number of
dynamic indices must be minimized and lot of side constraints must be taken into
consideration. Minimized dynamic indices are contradictory and for that reason compromise
variant of solution is necessary to search. For this efficient tool is developed by united
utilization of the simulation system and the global search code with the dialog procedure for
compromise searching. Main ideas of global search algorithm are briefly discussed. Basic
relations for obtaining of nonlinear system vibration response in the time domain are given
for the case of stationary and stationary bonded random excitations. Developed methodic is
demonstrated by formulation of optimization task for the common spatial power unit.
_________________________________________________________________________________________________________________
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1    Introduction

There are many practical tasks for vibration response optimization of multibody systems in
the case of absence of pronounced optimization criteria. In such tasks the state variables, used
in optimization process, are possible to divide in two groups. The first one has to satisfy side
constraints only. Let us call these variables as state variables of pure constraints. The second
group usually consists of the dynamic indices that especially characterize dynamic properties
of optimized object. These indices must satisfy the side constraints and simultaneously
numerical values must be minimal as possible. Let us call these variables as minimized state
variables. In the simple cases, when number of minimized state variables and state variables
of pure constraints is not so great, for the solution are available well-known multi-objective
optimization methods. For example algorithm package that is based on utilization of LPτ

distribution is discussed in [1]. For successful utilization of such type algorithms it is
necessary well-defined optimization task, that is very difficult at the initial stage of
investigation. For example, search region must be sufficiently localized and number of criteria
can not be very large. For case of investigation of non-linear vibrational systems additional
problems arise. Due to possible multi-regime motions the objective function has breaks as
well as regions where function is not defined at all. There are situations when the region of
the design variable variation is so wide, that obtaining the necessary dynamic regime is very
difficult by utilization of the specialized methods yet. A vast majority of the tasks are multi-
extremal and from the point of view of designer it is especially important to obtain all set of
extremes as possible. The last achievements in the field of global optimization are discussed
in [2, 3].
The aim of this study is to develop methodic and tools for solution of tasks without
pronounced optimization criteria to get possibilities of creation of the alternative variants for
the problem optimal solution.

2    Tools of Simulation and Optimization

For solution of the optimization task three ingredients of software are used: 1) Tool for
simulation of technical system behavior, 2) Tool for optimization, 3) Code that interlinks the
first two ingredients. The last one usually provides development and formation of objective
function as well as managing of the search process. These ingredients fully correspond to the
requirements of the "Three-Columns-Concept" [4].
Investigations are carried out for the objects, dynamic schemes of which it is possible to
construct from rigid bodies that are interlinked by means of non-inertial elastic and damping
links. It is considered small spatial oscillations. The standard inertial, elastic, dissipative and
excitation elements are used. As the standard elastic and dissipative elements serve element
with piecewise characteristic with one switch. The more complex characteristics are obtained
by parallel linking of the standard elements with appropriate characteristics. The standard
excitation elements are forces and moments, described by polyharmonic series, that can
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contain switches controlled by the state variable values and time. As random excitation serves
appropriate correlation functions.
For simulation of the described mechanical systems the automated imitation simulation
system Imita is used [5]. For dynamics simulation of the considered object class sufficiently
effective is so called “stitching method”. In the case of random excitation the time domain
methods are used. Utilization of these methods gives real possibility to implement
optimization of dynamics of the complex objects without the great expenses of processor
time.

2.1    Global Search Algorithm

The global search code Globex [6] is used for solution of the considered type tasks. This
algorithm is based on the idea of informative planning and global random search. It solves the
tasks successfully, which objective function are multi-extremal, non-analytical and noisy. The
global search algorithm is operating in the following way. Based on the results of the initial
search, which is done by  planning the experiments to cover all the initial region,  perspective
subregions are singled out in the form of rectangular  parallelepipeds. Thus it is the interior of
these subregion that  is being searched. The probability of an extreme situation is  assumed to
be higher in those subregions, where the function is of  a better value, as well as in those in
which there is a larger  concentration of better points. The search is conducted in series.
During each series the subregions are uniformly filled  with an equal number of trial points.
From the total number of  points the best ones are selected and their number corresponds to
the number of the subregions. Let these points be called support  points. The support points
are located in the centre of the  respective subregion. In the course of searching, those
subregions, which have not contained support point, are discarded  and simultaneously new
subregions are formed from several subregions. The sizes of the subregions constantly
decrease from  series to series.
The lengths of the subregions sides for the next series are obtained by dividing the sides of the
corresponding subregion of the current series whose contraction coefficient might for
instance, be of the following form: ,mak b/m1d

div
−=  where d- is the number of support points

in the corresponding subregion of the current series; m - is the number of optimized
arguments; a, b - are the numerical coefficients. Parameters d, a, b can be used for the
program controlling. Finding of the extremes is accomplished when within a given precision
all the subregions have been localized, i.e. when actually the entire summary region is
converted to point.
The main stages of the search process for two dimensional case (m = 2) are illustrated in
figure 1 a - c. Firstly in the initial stage of search support regions cover each other. Process of
extraction of  the perspective regions for search is going on. In the second stage the
perspective regions are distributed and support regions mainly do not cover each other as well
as they compete each with other. In the third stage algorithm already decides for extreme and
search is concentrated in the extreme attraction region.
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The extremes already found are isolated from further searching by means of penalty
parallelepipeds as shown in figure 1 d.

Figure 1: The search stages of optimization algorithm

Subsequent main indices characterize quality of optimization program: 1) In global mean -
safety of optimum finding; 2) In local mean - accuracy of optimum finding; 3) Number of  the
trial points necessary to achieve target, i.e. to find optimum.
In most cases user must solve the global search task. Then he is interested in safe obtaining of
the optimum with minimal number of the trial points. Usually in the case when the objective
function structure preliminary is unknown these indices are contradictory, that is, greater
safety needs more trial points. Such class of  the functions
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extremes were examined to compare safety of obtaining global extreme by Globex and by
typical non-linear programming routines [7].

Figure 2: Extremes found by Globex (dark columns) and by Supex (light columns)

For case m = 4 the function (1) has one global extreme (X* = [-1.47; 1.54; 1.57; 1.59] ; f(X) =
-42.93) and great number of local extremes. In figure 2 we can see that more than in 30%
cases Globex finds the global extreme, but in other cases three nearest local extremes. At the
same time non-linear programming routine  finds in much cases the local extremes with
almost regular random distribution.

2.2    Method for Solution of Equations of Motion

One has solved various types of differential equations to obtain dynamic response of the
examined class of discrete mechanical systems. Let us consider one of the methods used in
simulation system Imita for investigation of non-linear random vibrations. Suppose that the
non-linear M-D-o-F system is described by equation:

( ) ( )tfq qBqA =++ ϕϕϕϕ!!! ,                                                     (2)

where A, B are inertial and damping matrices of order n,
f, q are column vectors of stationary and stationary bonded excitations and generalized co-
ordinates, respectively,
ϕ (q) is column vector of non-linear restoring forces.
Instead of solution of (2) in the method of statistical linearization it is considered solution of
linear equation:

( )tfCqqBqA =++ !!! ,                                                       (3)
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where C is stiffness matrix of order n, whose elements are chosen so that (2) and (3) are
statistically equivalent in some sense. Solution of (3) can be obtained as the column vector of
the stationary random process q = q(c,t). Let us suppose that we know this solution and
substitute it into equation (2) and (3). It has been shown that equations (3) will be identity, but
the equations (2) will be identity only for case of introducing of Ψ - error column vector us a
supplement item [8]:

( ) ( ) Ψtfq qBqA +=ϕ++ !!! .                                                   (4)

Now by subtraction of (4) from (3) is obtained:

Cq(q)Ψ −= ϕϕϕϕ .                                                           (5)

Thus Ψ depends from matrix C elements values ci,j (i=1,…,n; j=1,…,n) then let us choose they
to minimize mean value of the such scalar multiplication:

minT >=ΨΨ< ,                                                          (6)

where “<>” designates operation of averaging. So we obtain equations:

0
c j,i

T

=
∂

>ΨΨ<∂ .                                                          (7)

Let us change the sequence of operations and firstly carry out differentiation. Then we obtain:

0
c
ΨΨ2

i,j

T >=
∂
∂<   or  0qΨ2 ji >=<− .                                        (8)

By substituting (5) into (8) we obtain:

( ) 0qqCqq TT >=<−>ϕ< .                                                 (9)

Let us introduce a force column vector h(z), whose elements are forces and moments, that act
on appropriate body at appropriate direction, and z is the vector of  the subsequent relative co-
ordinates. Then it is possible to write:

( ) ( ) ( )ik
i)k(k

ikii zhzhq ∑
≠

==ϕ .                                               (10)
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In this expression summing must be implemented for all the k non-linear elements, that are
attached to the subsequent body and give contribution to the force at the direction i. Taking
into account expression (10) the equations (9) obtain the form:

>>=<< TT h(z)qqqC .                                                   (11)

Averaging by ensemble of vectors multiplication for equal values of argument t, i.e. for τ =0,
where τ  is difference of time instants for which the correlation bonds are evaluated,
correlation matrices diverge to the corresponding dispersion matrices and we obtain:

hqqq DCD = , or  1
qqhq DDC −= ,                                              (12)

where Dqq and Dhq are matrices of dispersion of generalized co-ordinates and mutual
dispersion of the vectors h and q correspondingly. These matrices can be obtained by solving
of (3).
Let us illustrate above discussed algorithm for consideration of systems containing such type
characteristics of the non-linear springs:

rj(zj)=cjzj+ εjz3
j ,                                                        (13)

where zj is corresponding relative co-ordinate and cj, εj are constants.
Equations of motion of such type systems are:

( )tfΕzCqqBqA 3 =+++ !!! ,                                                (14)

where C is matrix of linear part of stiffness,
E is matrix of non-linear part of stiffness,
z is the relative co-ordinates vector that can be expressed from generalized co-ordinates by
transfer matrix:

q=Πz.                                                               (15)

Forces from the elastic elements that act on system bodies at the corresponding directions can
be expressed by vector:

3Εzzh(z)=C +Π .                                                        (16)

After multiplication of (16) by transposed vector of the relative co-ordinates z and averaging
by ensemble we obtain:

><+><>< T3TT zzΕzz=CΠh(z)z .                                       (17)
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By solving of equivalent equation (3) with the initial values of matrix C elements we obtain
first approximation of generalized co-ordinates dispersion matrix, that is:

Dqq=<qqT>                                                             (18)

and similarly

Dzz=<zzT>,                                                             (19)

where appropriate vector values are taken for the equal values of argument, i.e. for τ =0.
Taking into account (15) and (18) the expression (19) can be written:

Dzz=Π-1Dqq(Π-1)T.                                                       (20)

So matrix Dzz can be expressed through previously obtained dispersion matrix Dqq of
generalized co-ordinates. Now in expression (17) we must obtain only >< T3zz . For this we
can utilize bond between the characteristic function and the moments of random vector. The
central moments of random vector with normal distribution can be expressed through
characteristic function that expanded in Maclaurin series, so expression for the even central
moment calculation is [9]:

∑=
ss11

e

en1 qpqps
n1

,...,ll ...kk
s!2

!!...ll
μ ,                                           (21)

where summing is implemented for all possible 2s different rearrangements of indices
p1,q1,…, ps,qs and 2 1s l lne

= + +... , ne − number of vector elements. For example, for ne=4 one
of the central moment (element of matrix >< T3zz ) can be obtained from corresponding
correlation functions:

2111 zzzz2
3
11,1,1,1 kk3zzμ >==< .                                              (22)

Similarly all other elements of matrix >< T3zz  can be calculated by utilization of the
elements of correlation matrix, which are obtained from solution of  (3).
Now we can calculate matrix >< Th(z)z  and by using of (13) obtain the first approximation
of stiffness matrix for equivalent linear system (3):

( ) 1
qq

T1
hz DDC −−Π= .                                                     (23)

By repeating of solution of (3) we can obtain new values for the elements of dispersion matrix
'
qqD . By comparison of values of '

qqD with qqD etc., we can manage the convergence of
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iterative calculation process of dispersion. If discrepancies of values of the all generalized co-
ordinates for current and previous step are less than prescribed value of e percents, i.e.:

100
e

d

dd
qq

j,i

qq
j,i

qq
j,i

'

≤
−

;   (i=j=1,…,n),                                           (24)

where di j
qq
,

'

 and di j
qq
,  are elements of '

qqD and qqD  correspondingly, then it is supposed that
dispersion matrix of issue non-linear system (14) is obtained.
For determining solution of (3) in the time domain one has to solve two differential
correlation equations (for example, [10]):

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )σ=σ+σ+σ

τ=τ+τ+τ
T
qf

T
qq

T
qq

T
qq

ffqfqfqf

KCKKBKA

KCKKBKA
!!!

!!!
                                     (25)

where
Kff ( τ  ) - square matrix of correlation functions of excitations f,
Kqq (τ  ) - square matrix of correlation functions of generalized co-ordinates q,
Kqf (τ  ) - square matrix of mutual correlation functions of generalized co-ordinates q and
excitations f,
τ - difference of time instants for which the correlation bonds are evaluated ( σ  = -τ ).
Suppose that the correlation functions of stationary and stationary bonded random excitations
could be approximated by means of expressions of the following type:

( ) )sin/(cosDeKf τββα+βτ=τ τα− ,                                       (26)

where parameters D>0, α  >0, β ≥0. The presence of expressions like (26) in the right - hand
part of the first correlation equation (FCE) requires its solution to be obtained in two
intervals: I1- for 0≤τ≤∞− and I2- for ∞≤τ≤0  with subsequent stitching for argument
value 0=τ .
The following boundary conditions derive from the properties of the correlation functions:

( ) ( ) .0KK qfqf =∞=∞−                                                  (27)

The solution of fce can be obtained in the form:

( ) ( ) ( )τ+τ=τ qfpqfcqf KKK ,                                               (28)

where ( )τqfcK  and ( )τqfpK  are matrices comprising the appropriate complementary functions
and particular solutions. In view of independence of the Kqf ( τ  ) columns, let us consider
obtaining only one of them.
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The column l of ( )τffK  in I2 has the form of vector column:

( ) ατ−βτ+βτ=τ e)sinmcosm(k l2l1lff .                                         (29)

Then the particular solution is sought for in the form:

( ) ατ−+ βτ+βτ=τ e)sinucosu(k l2l1lqfp .                                      (30)

The column vectors l1u  and l2u  can be found from equation:

l2

1

l2

1

m
m

u
u

VP








=








,                                                     (31)

where VP  is a square matrix of order 2n

,
VV
VV

VP
2221

1211








=                                                        (32)

with square sub-matrices: ( ) ,CBAV 22
11 +α−β−α= ,A2BV12 α−β= ,VV 1221 −=

.VV 1122 =
The column l of ( )τffK  in I1 has the form of vector column:

( ) ατβτ−βτ=τ e)sinmcosm(k l2l1lff .                                       (33)

Then the particular solution is sought for in the form:

( ) ατ− βτ+βτ=τ e)sinucosu(k '
l2

'
l1lqfp .                                      (34)

The column vectors '
l1u  and '

l2u  can be derived from equation:

,
m

m
u
u

VM
l2

1

l
'
2

'
1








−

=








                                                   (35)

where VM  is of a structure similar to VP , but differs in the sub-matrices of order n, namely:

( ) ,CBAV 22
11 +α+β−α=    .A2BV12 α+β=                                (36)
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To obtain the column l of ( )τqfcK  appropriate homogeneous equation has to be solved. For
case of non- classical distribution of damping b1

b CAaAB ∑ −≠  (b=0,1,...,m), it is convenient
to consider equation of the form:

( ) ( ) ,0Wkk lzflzf =τ−τ!                                                    (37)

where ( )lzfk τ is a vector column of order 2n with structure:

( ) ( )
( ) 











=
lqf

lqf
lzf τk

τk
τk

!
 and ,

0I
CABA

W
11








 −−
=

−−

                             (38)

where I and 0  are unit and zero matrices each of order n.
If W  has 2n simple eigenvalues, namely, 2k complex ( jjj iν±µ=λ  for j=1,...,k) and ka real
( λ µj j==== ' for  j=1,..,ka ), then, after appropriate normalization, the eigenvectors can be grouped
as follows [ ] [ ] ,0LLiSKK ⋅−⋅+⋅⋅
where K and L are 2n x k matrices whose columns are the eigenvectors corresponding to the
real and the imaginary parts of the complex eigenvalues, respectively;
S is the 2n x ka matrix that contains the eigenvectors corresponding to the real eigenvalues;
0 is the 2n x ka null matrix.
Thereby the solution of (37) will be:

( )        ( ) −−= l1
μτμτ

lzf aντsineLντcoseKτk

       ( )   ,aeSaντsineKντcoseL l3
τμ

l2
μτμτ '

+−                              (39)

where:
 µτe - diagonal matrix of order k, whose nonzero elements are τµ je  for j=1,..,k and µ j are the
real part of the complex eigenvalues;

   ντντ sin,cos - diagonal matrices of order k, the nonzero elements of which are appropriate
trigonometric functions;

 τµ '

e - diagonal matrix of order ka , whose nonzero elements are τµ j'e for j=1,.., ka and µ j
'  are

real eigenvalues;
l3l2l1 ,a,aa  - vector columns of order k and ka respectively.

From stitching at 0=τ , the FCE solutions in I1 and I2, n equations can be obtained:
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( )
( )

( )
( ) ,
0k
0k

0k
0k

a
a
a

Mo
lqfp

qfp

lqfp

qfp

l3

2

1













−












=












+

+

−

− !!
                                      (40)

where the modal matrix [ ].SLKMo ⋅−⋅=
By substituting (30), (34) and their derivatives into (40) we obtain:









=












−

ql

lq1

l3

2

1

r
r

Mo
a
a
a

! ,                                                     (41)

where lqr!  and qlr  are vector columns of order n:

( ) ( )
.uur

,uuβuuαr

l1
'
l1ql

l2
'

l2l1
'
l1lq

−=

−++=!                                             (42)

Now the complementary function of FCE assumes the form:

( )    ( ) ,ApeeντsinSnντcosCoτk τμμτ
lzf

'

++=                                 (43)

where         ,aSAp,aKSn,aLaKCo 3221 ==−=
and      321 a,a,a  are diagonal matrices the nonzero elements of which are the appropriate
elements of column vectors 321 a,a,a ;

µτe  and τµ '

e  are column vectors whose elements are appropriate nonzero elements of  µτe
and  τµ '

e  .
After changing the argument the second correlation equation (SCE) assumes the form:

( ) ( ) ( ) ( ).KKCKBKA T
qf

T
qq

TT
qq

TT
qq

T τ=τ+τ−τ !!!                                   (44)

For practical purposes it is sufficient only to obtain the particular solution of (44) for τ ≥≥≥≥ 0 :

( ) ( ) ( ).KKK T
2qq

T
1qq

T
qqp τ+τ=τ                                                (45)

where ( )τT
1qqK  and ( )τT

2qqK  comprise solutions of (44) when in the right - hand of (44) there
are: 1) the particular solution of FCE and 2) the complementary function of FCE - both in I2.
In view of independence of the ( )τT

qqK  columns, let us consider obtaining only one of them.
If the column l of ( )τT

qqK  forτ ≥≥≥≥ 0  has a shape similar to that of (30) then the particular
solution can be found in the form:
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( ) .e)sinscoss(k l2l1lqq
ατ−βτ+βτ=τ                                           (46)

The column vectors l1s  and l2s  can be derived from equation:

,
u

u
s

s
VM

l2

1

l2

1








−

=







−

                                                  (47)

where VM  is the square matrix of order 2n with above considered structure.
Since the expressions for the FCE complementary function (43) are of a structure similar to
that of the elements of ( )τqfpK , likewise ( )τ2qqK  can be obtained. Thus, to obtain ( )τ2qqK
one has to inverse n matrices of the type VM . Thereupon the necessary dispersion matrices of
the output processes can be obtained, for example, of generalized co-ordinates:

( ).0KD qqpqq =                                                           (48)

To sum up, the developed method in every iteration requires solving the standard eigenvalues
problem for an arbitrary real matrix W of order 2n and inverting (n+3) times of matrices of
order 2n, as well as performance of several simple operations.
Despite of the cumbersome algorithm it is very efficient from computational point of view. It
allows to implement global optimization procedure for investigation of non-linear random
vibrations of complex objects. However further investigations are necessary to broadly utilize
this method in the optimization loop, because it is possible to climb over the basic hypotheses
of the method during parameters variation.

3    Common Formulation of Optimization Task

Optimization strategy for the considered type tasks we shall explain by using of the simple car
power unit dynamic scheme shown in the figure 3. Initially power unit is treated as body with
6 DoF. The body of the power unit is supported on a frame by means of three mountings S.
There are two polyharmonic excitations acting on the power unit: 1) the force P acting
vertically, and 2) the moment MF the vector of which is parallel X axis.
In the common case of optimization the stiffness of the power unit mountings and the
attachment coordinates of the mountings serve as the design variables. There are three spatial
mountings, therefore the design variables vector is following: [C1X, C2X, C3X, C1Y, C2Y, C3Y,
C1Z, C2Z, C3Z ,S1X, S2X, S3X, S1Y, S2Y, S3Y, S1Z, S2Z, S3Z]. So for the given case we have 18
design variables. Let us designate this vector as: 1,2....,18i;Xi = . The design variables have
subsequent region for the initial search:

iii XmaxXXmin ≤≤ .                                                 (49)
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Figure 3: Dynamic Scheme of the Car Power Unit

For the considered task the state variables of pure constraints are eigenfrequencies (f1, f2, f3,
f4, f5, f6). They have following side constraints: 10< f i<19[Hz]. Let us call these constraints as
pure constraints (PC):

iii maxPCPCminPC ≤≤ .                                               (50)

Then minimized state variables follow. They can be divided in the two groups:
a) The angular displacements and the linear displacements of the characteristic points of the
power unit SMi are first one. They have following side constraints:

iii maxSMSMminSM ≤≤ ,
b) The maximal dynamic forces Fij of the suspension mountings have side constraints also:

ijijij maxFFminF ≤≤  .
These variables we need to minimize and they ideal value will be zero. Usually zero is
impossible for dynamic system, therefore we must seek the compromise variant for these
variables. SMi and Fij can oscillate and therefore they have two-sided constraints. In the
common case for these parameters let us introduce designation MQ (Minimized Quantities).
Then the side constraints are following:

   iii maxMQMQminMQ ≤≤ .                                             (51)
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We can see, that the considered task has many minimized variables and at the same time has
not pronounced optimization criteria, therefore this class of the tasks can be named as the
tasks without pronounced optimization criteria.

4    Optimization Strategy

Now let us consider the objective function F. According to developed optimization strategy it
consists of three parts:

321 FFFF ++= .                                                       (52)

Item F1 provides the fast entering of the search process in the regions where pure constraints
are satisfied. For the considered in the previous section task it can be expressed in the
following way:

∑+= i01 PENALT1PENALT1F                                (53)

( )
( )








>−

<−

≤≤

=

ii
2

ii

ii
2

ii

iii

i

fmaxffmaxf

fminf;ffmin

fmaxfminf0;

PENALT1                                      (54)



 ≤≤

=
6

iii
0 10

maxffminf0;
PENALT1                                        (55)

When pure constraints are satisfied then the item F1 practically switches off and in the further
search provides filtration of the trial points that do not satisfy these constraints. Numerical
value of the constant (in this case 106) in (55) has not special meaning. It must provide
prevailing of item F1 under F2 and F3 only. So firstly the regions, where the pure constraints
are satisfied, are extracted from the search and only after that optimization is continued.
When the algorithm finds the regions, where the pure constraints are satisfied, then the second
item F2 provides the fast entering into the regions, where the minimized state variables satisfy
side constraints. So it provides the partial solution of the task and the starting conditions for
the last optimization step. This step is mainly interactive and it realizes finding of the set of
the compromise solutions. F2 can be expressed subsequently:

iPENALT2PENALT2F 02 ∑+=                                       (56)



16

( )
( )








>−

<−

≤≤

=

ii
2

ii

ii
2

ii

iii

i

MQmaxMQMQmaxMQ

MQminMQ;MQMQmin

MQmaxMQminMQ0;

PENALT2                               (57)



 ≤≤

= 4
iii

0 10
maxMQMQminMQ0;

PENALT2                                     (58)

This item acts like item F1. When the regions, where minimized state variables satisfy the side
constraints, are found, then the item F2 practically switches off and in the further search
provides filtration of the trial points that do not satisfy these constraints. Numerical value of
the constant (in this case 104) in (58) has not special meaning. It must provide prevailing of
item F2 under F3 only. Additionally the item F2 must not prevail under F1. The permissible
borders of constraints (56-58) usually are wider than technically allowable. This provides the
easier search of the necessary regions as well as broadens possibilities of the design variable
variation in the third optimization step.
In this last optimization step it is necessary to realize purposeful minimization of the
minimized state variables as well as to monitor this process and providing correction of the
optimization task in the case of necessity. If all minimized state variables are united in one
expression as a preference function, for example, by using of appropriate square sums, then
there are great difficulties to manage the progress of optimization and the obtained result. The
following algorithm is proposed for easier managing and interpretation of the optimization
process. The values of lower and upper bounds of the minimized state variables are chosen so
that by user opinion they are equally good. Let us call these intervals as binding intervals. In
the simplest case they are equal with the technically permissible boundaries. Further in
optimization criteria the normalized minimized state variables are used. If values of the
minimized state variables are situated in the binding intervals, then normalized values must
change within equal borders, for example, from –1 till 1. In common case the relations of
linear normalization are following:

iiii MQBAMQN ⋅+=                                                   (59)

It is possible to use different normalization. For example, normalized and unnormalized
quantities can meet requirements to coincide zero values etc. The third item of the objective
function is following:

( )i3 MQNmaxF =                                                       (60)

Such arrangement of the objective function item for the condition, when the minimal and
maximal border of the binding intervals are normalized to –1 and 1 appropriate, provides
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great advantage for case when there is necessity to visualize and to manage optimization
process. User gets full notion about optimization process by observing optimization search.

5    Conclusions

The optimization tasks of the dynamical systems without pronounced criteria and with the
great number of constraints are possible to solve effectively by using of global optimization
system and special three-step strategy for localization of solution. Accordingly to it in the first
step the regions are localized where the pure constraints are satisfied. In the second step the
further localization of the regions are obtained where the side constraints of the minimized
state variables are satisfied. In the last step the minimized state variables are united by means
of the binding intervals. Such a binding in dialog mode gives possibility for the users by
changing of the appropriate values of the binding interval parameters to easy manage
searching of compromise solution in the necessary direction.
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