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Abstract. For metamodel building the approximation method on the basis of orthogonal multivariate
polynomials of discrete variable is proposed. Latin hypercube type experimental designs with minimal mean
distance between regular s-dimensional grid points and experimental points are used. The best functions are
selected using augmented dataset, obtained by local approximation. Optimal number of terms in regression
function is chosen by two-stage holdout method. Ten artificial and one practical problem with 2 to 8 input
variables are tested. Results for artificial problems are compared with the results obtained by other authors
using Radial Basis Functions, Kriging, Multivariate Adaptive Regression Splines, Quasi-regression and local
polynomial approximation. In most cases the proposed method gives predicted accuracy comparable with the
best results obtained by other methods.
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1. Introduction

In structural optimization the computational time for some problems is too high to use
conventional methods of minimization. For example, it can take several hours to get a
finite element solution of one variant in order to obtain a response of structure. It is
necessary to perform calculations of several thousand variants for the optimum design
problem.

In order to reduce computational efforts methods based on approximation concepts
can be used. Nowadays, these methods take a dominant position in structural
optimization (Barthelemy and Haftka, 1993). The development of approximation
functions has become a separate problem in optimum structural design (Toropov 1989).
The approximating models can be built in different ways. Empirical model building
theory is discussed in (Box and Draper, 1987). To construct a more general model of the
original function the method of experiment design (Audze and Eglais, 1977; Krug and
Sosulin, 1977) together with approximate model building (Eglais, 1981; Myers and
Montgomery, 1995; Khuri and Cornell, 1996) can be employed. A simplified model,


mailto:rikards@latnet.lv

2 AUZINS AND RIKARDS

called metamodel, is built using results of a numerical experiment in the points of
experiment design. Response analysis using the simplified model is computationally
much less expensive than solution using the original model. Although there is wide
literature about experiment design and building of approximating functions it should be
noted that there are some special features present in experiment design but not present
in the physical experiment. The main features are as follows:

1) The results obtained in the numerical experiment are deterministic without a
statistical error. Repetition of the results is 100%. It means that there is no statistical
dispersion of the model parameters. However conputer nodels produce
nunerical noise as a result of the inconplete convergence
of iterative processes, round-off errors, and the discrete
representation of continuous physical phenonena when different
number of calculation steps or a different finite element grid being generated (see
Giunta et al., 1994). In deterministic computer experiments, replication at a sample
point is meaningless; therefore, the points should be chosen to fill the design space.

2) Mathematical model of the object is unknown, i.e., the form of the regression
equation is not known. Therefore, well-known criteria for experiment design optimality,
for example, D-optimality, cannot be used. Such criteria can be used only in the case
when the form of regression equation is known.

The first space filling design for computer experiment was proposed by Audze and

Eglais, 1977. They firstly proposed designs in which the number of levels for each
variable is equal to the total number of runs. Audze and Eglais have firstly used also the
space filling criterion for such designs based on function similar to potential energy of
gravity. The publication (Audze and Eglais, 1977) was in Russian. In the papers
(Rikards, 1993 and Rikards et al., 1992) the space filling criterion proposed by Eglais
was outlined in English. These experimental designs was popular by scientists in former
Soviet Union and are used so far not only in East Europe, see for example Venter et al.,
2000. Later the same kind of experimental designs (without any optimization) was
proposed as a Monte Carlo integration technique by McKay et al. (1979) and the name
Latin hypercube samplings was introduced. Numerous space filling experimental
designs have been developed in an effort to provide more efficient and effective means
for sampling deterministic computer experiments based on Latin hypercubes. Later a lot
of space filling criteria for Latin hypercube designs was proposed by many authors:
Maximin Latin hypercubes (Morris and Mitchell, 1995; Johnson et al., 1990), Minimal
Integrated Mean Square Error designs (Sacks et al., 1989), Orthogonal array-based
Latin hypercube designs (Tang, 1993), Orthogonal Latin hypercubes (Ye, 1997),
Integrated Mean Square Error (IMSE) optimal Latin hypercubes (Park 1994).
The approach of experiment design and approximation proposed by Eglais (Audze and
Eglais, 1977; Eglais 1981), and a corresponding program RESINT can give good results
for the problems based on numerical experiment. This approach was employed for
solution of optimal design and identification problems (Rikards, 1993; Rikards et al.,
2001). However, sometimes the results of the approximation are not satisfactory.

In last years the so called non-parametric approximation methods becoming widely
used for the design and analysis of computer experiments: local polynomial
approximation (Cleveland and Devlin, 1988; Koehler and Owen, 1996), Kriging (Sacks
et al., 1989; Booker et al., 1999). Finally, other statistical techniques such as
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Multivariate Adaptive Regression Splines (Friedman, 1991) and Radial Basis Functions
(Hardy, 1971; Dyn et al., 1986, Powell, 1987) are beginning to draw the attention of
many researchers. However, these methods are computationally expensive not only for
metamodel building, but also for using of metamodels for prediction. In addition
sometimes these methods are very sensitive to the noise (Jin et al., 2000) and can give
overfitting with many false local extremes. Thus, the finding of accurate global
approximation for use in constrained optimization is still actual problem.

2. ldentification of the model

Based on experiment design approach the stages of model-building are as follows.

2.1 Elaboration of the plan (design) of experiment

There is wide literature on elaboration of plan (design) of experiment (Audze and
Eglais, 1977; Krug and Sosulin, 1977; Myers and Montgomery, 1995; Khuri and
Cornell, 1996; Haftka et al., 1998). However, as was mentioned above, the criterion for
experiment design is related to the form of the regression equation. Good results can be
obtained using experiment designs proposed in (Audze and Eglais, 1977), where for
each variable x;, the number of different values is equal to the number of experiments.
Usually, it is assumed that numerical values of x; are uniformly distributed in the
interval [-1, 1]. For these designs, the points are distributed according to the criterion of
minimum of potential energy of repulsive forces for a set of unit mass points. The
magnitude of these repulsive forces is inversely proportional to the cubed distance
between the points. Although such criterion has no mathematical validation, good
results can be obtained for approximating functions using the experiment designs
(Audze and Eglais, 1977).

A different approach, which was proposed in (Kreinin et al., 1976), is the so-called
L-optimum continuous experimental design. Here pseudo optimum designs are formed
by adding new points to the existing plan. Similar approaches of sequential experiment
are the Hammersley sequence (Niederreiter, 1992), the Sobol’ sequence (Sobol’, 1976),
Halton sequence (Halton, 1960) an the Faure sequence (Faure, 1982). However, for the
same number of points, a fixed design is usually better than the continuous design.
Actually, the number of experiment points is always selected by evaluating
computational efforts of the calculation of original function for one point.

2.2 Selection of a set of regression functions

A mathematical model is built by linear combinations of some class of functions.
Therefore, it is essential that a wide range of functions can be selected. Usually, a set of
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finite number of functions is employed. In this case, there is no such completeness of
the set of functions as it is for approximations by infinite series.

In (Eglais, 1981), the set of regression functions is formed as a product of variables
raised to the power of positive or negative integer in a way that the total sum of
functions does not exceed 400. There has been considerable interest on the topic of
experimental designs for model discrimination (function selection) (Atkinson and
Fedorov, 1975; Pukelsheim and Rosenberger, 1993; Meyer et al., 1995), discussed in
(Srivastava, 1996). So called MEP+P plans involve candidate models in which all
candidates include all first order terms and the candidates differ by the combination of P
terms from a chosen list of higher order terms. This approach needs very large
computation time for relatively small number (up to 10) of candidates (Allen and Yu,
2000).

In one-dimensional case, the orthogonal functions (trigonometric, Legendre or
Chebyshev polynomials (see Abramovitz and Stegun 1964)) are often used, for
example, Efromovich (1992) proposes a version using orthogonal series of functions on
[0,1]. Employing the orthogonal functions it is easy to select the optimal functions,
since each function is tested separately. However, such selection can be performed only
in the case when the functions are orthogonal to the discrete plan of experiment, i.e.,
when the information matrix is diagonal. In the case of small number of experiments for
the integrally orthogonal functions, the information matrices are not diagonal.
Therefore, there is no advantage of using the Chebyshev polynomials in comparison
with simple polynomial functions. The diagonal information matrix means that the
number of orthogonal functions cannot exceed the number of experiments. An and
Owen, 2001, propose quasi-regression method, in which products of univariate
Legendre polynomials are used as basis functions, coefficients of these functions are
obtained by Monte Carlo integration instead of solving the regression equations. Quasi-
regression approach needs very large number of observations (experimental runs) in
order to obtain acceptable accuracy. This paper will show how to complete the
experiment in order to employ several thousand orthogonal functions using low number
of experimental runs.

2.3 Testing for goodness of fit

Using the bank of functions, it is possible to build regression functions with a different
number of terms. In (Eglais, 1981), it was proposed to find the best regression function
(with minimum of standard deviation) with number of terms r, where r is larger than the
number of terms expected for the optimum regression equation. Then term reduction is
performed to eliminate the "worst" functions. Thus, step-by-step, shorter regression
functions are formed. By drawing a graph of standard deviation as function of number
of terms, the break in the graph can be observed. According to (Eglais, 1981), the break
corresponds to the optimum number of terms. By using such a method, satisfactory
results can be obtained. However, the method has some defects:
1) There is no reason for choice of the initial number of terms p.
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2) Employing non-orthogonal functions makes it difficult to find the combination of
the "best" p functions from about 400 possible functions (400 is not a large
number in the case of an experiment with 10 or more variables).

3) The choice of the break in the diagram of term reduction is subjective, and the
optimum number of terms cannot always be obtained.

The adequacy of the mathematical model can be checked by employing additional
experimental points, which leads to a more objective method. In this method, two
alternative variants of the correlation function are compared by calculating the standard
deviation in additional points, which are not used in determination of the parameters
(coefficients) of the correlation function. Such an index characterizes the prediction
ability of the mathematical model. The disadvantage of this method is the necessity to
use larger number of experimental points, because the number of additional points is
about the same as the initial number of experimental points. For refinement there are
different variants of holdout, cross-validation and bootstrap methods. These methods
do not add a new measurement (which requires computer time), but eliminate k
experimental runs and re-estimate the regression model from the remaining N - k runs.
Such elimination is repeated | times and the average of root mean square error (RMSE)
for estimating of accuracy of prediction (or for comparing prediction accuracy of
alternating models) is employed. A well known statistical details are discussed in
Kleijnen and Van Groenendaal (1992); also see Kohavi (1995). In the present paper
leave-one-out cross validation and k-fold cross validation is used and these methods are
explained below.

3. Orthogonal multivariate polynomial functions

Nomenclature:
N - number of experiments (experimental runs);

s — number of input variables ( number of arguments of equation of regression);
Xi— i-th input variable (i=1,.., s);
Xij— numerical value of i-th variable in the j-th experiment;

F;— value of target function, measured (or calculed) at the i-th experiment;
Xi— matrix-column containing numerical values of all variables for i-th experiment;
F — matrix-column containing values of target function in all experimental points;

z; — the i-th point of the interpolated experimental table (augmented experiment
design);

Gi— approximated value of target function in the i-th point z; of augmented
experiment;

Ng — total number of the base functions;

fi(x) — the i-th base function;

M — number of equidistance points for each input variable in the augmented
experimental set (s-dimensional grid size);

pi(y,M) — univariate (Chebyshev type) polynomial of i-th order from set of polynomials,
orthogonal on M discrete points from interval [-1,1], (i=0,1,..., M-1);

IfD (X) - approximation of function F(x), using sample set D;
t — number of nearest neighbors (bandwidth) used in local approximation;
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Ni(z)) — set of indices of the nearest neighbors to the point z,.

In this paper we are constructing the basis functions over [-1,1]° by taking tensor
products of univariate basis functions. The purpose is to obtain orthogonal functions on
the set of points from regular s-dimensional grid of size M. As univariate functions we
are taking polynomials pi(y,M), which are orthogonal on discrete set of M equidistance
points from interval [-1,1]. These polynomials can be obtained from the well known
discrete Chebyshev polynomials ti(x,M), which are orthogonal on the set of integer
values (0,1,..., M-1), (see Chebyshev 1948, Abramovitz and Stegun 1964; Nikiforov
and V.B. Uvarov, 1988; Nikiforov et al., 1991) . Also the so called three-term
recurrence relation is applicable. Thus, one can obtain:

Po(y.M)=1 , (1a)
Py, M)=y (1b)
pi(y, M) =ypii(y,M) - l F Jp, (M) i=2,..,M-1

-1f 4 l y-1 (1c)

These polynomials satisfy an orthogonality relation of the form

i (M +i)!) : 2
(2 +1)N —i-1) (i +1f OM -10 @)

Zp(yk,M)p (Y, M) =

where & is the Kronecker symbol and (a)i=a(a+1)--(a+i-1) denotes the Pochhammer
symbol and y;=(2i-M)/M are discrete equidistance points from interval [-1,1]. These
polynomials are similar to the Legendre polynomials and become equal to Legendre
polynomials in the case when M tends to infinity. Moreover, they form a very important

special subclass of the Hahn polynomials h# (y, M), (Nikiforov and Uvarov, 1988;

Nikiforov et al., 1991): that with a==0.
In the case of grid size M=7, the polynomials are:

(Y. 7) =1, p(Y.7)=Yy, p,(y.7) =y’ —0.4444444444,

ps(y,7) = y* =0.7777777777y

p,(y,7) = y* —1.0634920634y> +0.1269841269 ©))
p.(y,7) = y® —1.2962962962y° + 0.3080540858Yy ,

ps(Y,7) = y° —1.4646464646y" +0.4870931537y* —0.0213777991

These polynomials presented in figure 1 are orthogonal at the discrete 7-point set.

In the method described below the orthogonality of base functions will be used for
selection of perspective functions, but not for determination of coefficients of the
regression equation. Selection will be performed not for the initial experimental points,
but for the augmented set of experimental points. The augmented experiment set is
created by local approximation (smoothing) of the experimental results. Therefore, the
augmented experiment set can be chosen in order to easily obtain a corresponding set of
orthogonal polynomials.
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Figure 1. Orthogonal 7-point polynomials.

In this paper we are taking the s-dimensional basis functions to be tensor products of
univariate orthogonal polynomials pi(y,M)

f (x)= |'l Pa, (X, M) 4
j=

Here a, is an s-dimensional vector containing degrees of factors of k-th function for
each variable x;. The sets that we are choosing for analysis are defined by vectors
0 =(0ly, ..., Os) OF NONNegative integers satisfying limitations

s
Z a, <d, ()
J:

maxa, <m

I<jss (6)

Here d; is maximum degree of univariate polynomial for j-th variable and m is
maximum order of the basis functions.

When the maximum degree limit for all variables are identical and equal to the
maximum allowed value M-1, then the total number of basis functions (all possible
products of one-dimensional polynomials) are Nr =M°. Therefore, in the augmented set
there should be at least M® experiments. It is easy to examine that all M® functions f; are
mutually orthogonal to the set of M® discrete points.

Ng
S 1G)1,) =0, i i% ] 0

The next problem is augmenting of the initial experiment to M® observations.

4. Augmenting of experiment using local quadratic approximation
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Several methods for data augmentation exist (See Tanner, 1991). Here the local
quadratic approximations are used to obtain the approximated values in the M°® points of
the regular s-dimensional grid (augmented experiment). We are using the well known
nearest neighbor approach (see Kleijnen and Groenendaal, 1992; Cleveland and Devlin,
1988; Fan and Gijbels, 1996). In order to obtain the interpolated values of function in

the grid point z;, the point set T(Zj) of t nearest experimental points in the s-

dimensional space is found. Then, in the point z;, a numerical value of the second order
approximating polynomial is calculated using weighted least square method. Let

||[n]mea5ure Euclidean norm; then the distance between the points z and x; in s-
dimensional space is given by

S
% -z = Z(Xik 'ij)z ®)
The number of nearest points t often called bandwidth should be larger or equal to the
number 1+s(s+3)/2, which is the number of terms in the second order polynomial of s
variables. From the experience with different approximations, it can be concluded that t
should be considerably larger. In order to select the optimum value of t, we are using
the leave-one-out cross validation (Efron, 1983; Mitchell and Morris, 1992) method, in
which local approximations for initial points of the experiment are tested. In this
approach, each sample point used to fit the model is removed one at a time, the model is
rebuilt without that sample point, and the difference between the model without the
sample point and actual value at the sample point is computed for all sample points. The
cross validation root mean square error (CVRMSE) is computed

CVRMSE, = o)

The bandwidth value, which gives minimum of CVRMSE is selected. We are using the
least square estimators

® :i Zj)Wi(Zj!Xi)E:i =By~ Zﬁkxik - Z iﬁklxikxng (10)

with weighting function

w(zj,xi)z(l—u)4 : (1)
where U = ”Zj _ Xi” so that u=1 for farthest nei
= , = ghbor.
max |z - x|
KO (z;)

We also tried the tricube function W(Zj , Xi) = (1 - u3)3 , as suggested by Cleveland,

as well as locally unweighted approximation, but the function (11) as proved
empirically is to be slightly better than others.
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Similarly, the local linear approximation was employed. However, results were not as
good as for the local quadratic approximation (see Table 1 below).

5. Selection of experimental design

Knowing that in approximation it will be necessary to obtain the values of interpolated
function in the points of the s-dimensional grid, it is essential that points of initial
experiment are distributed so that locally approximated values will be as accurate as
possible. By performing approximation with the second order polynomials, the error of
interpolation is increasing proportionally to the product of distance between the points
used in interpolation, if the points are distributed close enough. In the neighborhood of
the grid point, there are only few points of the real experiment (usually only one to two
points). Therefore, the quality of experiment plan is characterized by a sum of the
distance raised to the power of four between all grid points and the closest experimental
point
Ne
r=YAa, (12)
1=

where A\, is the distance between the grid point z; and the closest experimental point.

When in (12) the power of four instead of the power of two is employed, the criterion is
brought closer to the criterion of maximum distance. In such a way it is not allowed to
form the plans of experiment with empty domains in some places. The minimum of
criterion (12) without constraints can be easily found by employing the Newton's
method. However, many local minimums were found with about the same value of the
cost function I'. In the left plan of figure 2, one projection of the 36-point five-
dimensional design is shown (the value of the cost function I =1739 is best that was
found for this design).

e LA . .

Figure 2. 36-point designs in plane 1-2. From left to right: optimized unconstrained design, M=1739; Eglais'
Latin hypercube type design, I =3322; optimized Latin hypercube design, ' =3318.

By employing the Eglais' criterion good values of the cost function (12) can also be
obtained (see figure 2, middle plan). In the right plan of figure 2 the design optimized
according to the criterion (12) is shown, using as initial estimate the Eglais' plan. It can
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be seen that the improvement is negligible. By distributing regularly the levels of
experiment in the interval [-1,+1] but not requiring that extreme levels should be exactly
at -1 and +1, a slightly better value of cost function I =3271 was obtained.

6. Selection of regression functions

Selection of the regression functions is performed in the following three stages.

1. Selection of N, best orthogonal functions using augmented set of experiment. In
this stage the basis functions f, are ranged according to deviation in the points of regular
grid

Ng
2
o, = (ak f (z) - Gi) (13)
1=
These functions are orthogonal and coefficients of approximation a, can be easily
determined

(14)

=
It is not necessary to employ all of the Ng functions. Also, maximum degree d and
maximum order m can be restricted. For example, if it is known that in the mathematical
model the powers of the variables are not higher than three, then the limitation d=3 and
m=3 can be used. By setting d=2 and m=2 the well known second order polynomial
approximation can be obtained. The number of functions N, to be selected can exceed
several thousands, however, this parameter has no significant influence on
computational efforts of the selection process.

2. Ranking of the best functions by using the points of initial experiment. In this
stage ranking of the functions selected in the first step is performed. This selection is
more complicated since the functions f, are not orthogonal to the initial experiment. In
distinction from algorithm (Eglais, 1981), where a term reduction is performed, in this
step the number of terms | will be increased. We start with one term I=1, and from the
previously selected N, functions as the best the function with minimum standard
deviation in the points of initial experimental design is selected

N
o, = (ak f (x)-F )2 (15)

where the coefficient a is calculated by using the formula
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N
F A (x)
a, = 5———
2
f (%)
1=
Further, the regression function is built increasing the number of terms I, i.e., adding

new terms. In this step the function chosen as the best (added from the basis functions)
is the function selected in the first stage with the minimum standard deviation

2
N [
o} :ZEZak] fk](xi)—FiE (17)
1= =

Note that there is a difference from the case of augmented experiment. Now the
coefficients aj , j =1,2,..,] are obtained from solution of linear algebraic equations

(16)

with a symmetric positive definite information matrix A, (see e.g. Krug and Sosulin,
1977). It is a time consuming process because Ny—I+1 functions, which could be used in
the mathematical model, must be examined. The process of selection can be
considerably accelerated since for all Ny—I+1 variants in the information matrix only the
I-th row and column are changed.

The total number of terms in the regression equation is usually limited to N/2.

3. Determination of the optimum number r of terms in the regression equation.
Estimating the accuracy of metamodels it is important not only to predict its future
prediction accuracy, but also for choosing the best metamodel from a given set — this is
equal to the selection of optimal number of terms in regression function. The best
estimator for accuracy of prediction of metamodels and for selecting the best
metamodels is calculation of prediction error on an additional sample of size B, which is
not used by metamodel building. Then the Root Mean Square Error (root MSE)

SR - Fox)

rootMSE = 5 (18)
Average Absolute Error (avg.abs.error)

avg.abs.error :%_ i |Fi - If(xi)|, (19)
Maximum absolute error (ma>|<:.at;;.error)

max.abs.error = Jmax F - lf(xi )| (20)

can be used for selection of the best metamodel, or optimal number r of terms in
regression function, respectively.

Unfortunately, this method is frequently too expensive, because we must perform
additional calculations or carry out new natural experiments. In practice the dataset size
is usually smaller than we would like to use.
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V. Eglais (Eglais, 1981) proposed approach, in which only residual root mean square
error is used

N A 2
Z (F(Xi) - F(Xi))

residual RMSE =1|-= (21)

N-r+1

By drawing a graph residual RMSE versus the number of term r the break in the graph
can be observed. According to (Eglais, 1981), the break corresponds to the optimum
number of terms. It will be shown in demonstration examples, that using of this simple
approach is limited.

Two most common methods for accuracy estimation without using an additional
experiments are cross validation and bootstrap. It is known that no accuracy estimation
can be correct all the time (Kohavi, 1995), therefore we are interested in identifying a
method that is well suited for the biases and variance in real datasets. For example,
leave-one-out cross validation is almost unbiased, but has high variance (Efron, 1983).
Holdout, cross validation and bootstrap methods are widely used in statistics (Kohavi,
1995; Efron, 1993; Moore and Lee, 1994; Kleijnen and Van Groenendaal,1992).

We are using a version of holdout method for estimation of prediction accuracy of
metamodels. The holdout method, sometimes called test sample estimation, partitions
the data into two mutually exclusive subsets called test set, or holdout set Dy and
training set D\Dy. It is common to designate 2/3 of the data as the training set and the
remaining 1/3 as the test set (Kohavi, 1995). The estimation of model coefficients is
performed using the training set of size N-k and the holdout estimated accuracy is
defined as root mean square error calculated in the k test points

RMSE, = ; (f (x)- fD\Dh (% ))2/< : (22)

11Dy

The holdout estimate is a random number that depends on the division into a training set
and a test set. The holdout method is repeated L times, and the estimated accuracy is
derived by averaging the runs. The standard deviation can be estimated as the standard
deviation of the accuracy estimations from each holdout run and the number of holdout
runs L can be determined for a given confidence interval (Kohavi, 1995). The holdout
method is a pessimistic estimator because only a portion of the data is given for building
the approximation (Kohavi, 1995). The more experimental points we leave for the test
set, the higher is the bias of our estimate. However, fewer test set points means that the
confidence interval for the accuracy will be wider as shown in (Kohavi, 1995).

Kohavi, 1995 proposed using of ten-fold cross validation, which need smaller
number of validation runs. Our practice shows, that 1/3 holdout as well as ten-fold cross
validation can give worse suggestions for the choice of r. This will be showed in
demonstration examples. In practice, we are using a two-stage holdout validation. At
first, the 1/3 holdout is carried out and the optimal number of terms r, which gives
minimal RMSE, is chosen. In questionable cases second holdout test with k=N-2r is
executed to get more accurate value.
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The number of trials L to obtain the predicted RMSE with the necessary standard
deviation from which the optimum number of terms can be drawn is about 10N to 50N.
This is the most time consuming stage of the mathematical model identification for
problems with the small (2 to 4) number of independent variables. It is noteworthy to
emphasize that the final parameters of the mathematical model - the coefficients a;,
(j=1,2,..,r) - are obtained employing all of the N experimental points.

7. Demonstration of the method

The proposed method of identification and the performance of corresponding software
APROX are demonstrated using several examples — 11 artificial test problems and one
practical problem from the robot design.

7.1. Example 1

In the first test example the original function is given in a form of function with five
arguments

F =(x, +1)sin(x,) + X, X, (23)
It can be seen that the argument xs is not presented in the function. For the experiment a

36-point 5-dimensional plan proposed in (Audze and Eglais, 1977) is considered. Since
the function is known the standard deviation in 10000 points distributed regularly in the

domain of approximation —1< X, <1 is used as the criterion of the accuracy of the

mathematical model. Ranking of the basis functions is as follows

Xl’ X2X3’ X1X4’ p3(X1), p3(X1)X41 pS(Xl)’ pS(Xl)XA’ p3(X2)X4X5 '
Predicted and actual standard deviations are presented in figure 3. From the graph of

predicted standard deviations it can be seen that optimum number of terms in the

mathematical model is seven. It should be mentioned that regression equation

(mathematical model) does not contain the argument xs. The actual standard deviation is
less than 10™ % of the function range.

O %)
0.7

|

06 [y

0.5 \
. \‘\
0.3 ‘\\
. \\

0.2 ‘\
——

4 5 6 7 8 9 10 11 12 13 14 15 16 17

0.4

Figure 3. Predicted ( ) and actual ( ----- ) standard error versus number of terms in equation of
regression.
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7.2. Example 2: Identification of mathematical model of the composite plate

In the second example an actual identification problem is solved. The task is to build a
mathematical model for eigenfrequencies of the cross-ply laminated composite plate.
The arguments (variables) are five elastic constants of material (Rikards et al., 2001)

E, E,
X, =——L1 — x,=—2
1_V12 EZ/El, 1_V12 EZ/El ,
(24)
- Vi, By
1-vy, E2/El , Xy :stl X; =Gy,

X3

where E;, E; are the longitudinal and transverse elastic moduli for the single layer of the
cross-ply laminated composite plate, V,, is Poisson's ratio of the layer and Gy, Gy, are
the shear moduli of the layer.

The eigenfrequencies of a plate with free-free boundary conditions were calculated by
the finite element method (FEM) in the 36 reference points the experiment plan. A 36-
point 5-dimensional plan proposed in (Audze and Eglais, 1977) was used. The original
numerical functions were calculated for the first 30 non-zero eigenvalues corresponding
to the first 30 lowest eigenfrequencies of the plate. In addition, the FEM solution was
obtained in the other 35 points in order to verify the adequacy of the models obtained.
For this, a 35-point 5-dimensional plan of experiment (Audze and Eglais, 1977) was
employed. In Table 1, the relative Root Mean Square Error values for different
approximations are presented (r is number of terms in the model). The Relative Root
Mean Square Error E, is calculated in percents by formula

E, :;-.I.L(I:))\/I\ILNZC[AA(Xi)_)‘i]2 (25)

C I=

Here A; is a value of the original function in the i-th point of additional experiment, A(x;)
is a value of the approximating function in the same point, STD stands for standard

deviation of original function STD:\/ . (/\' —/T)Z and N¢ =35 is number of
c~ g I
confirmation points.

In Table 1, it is shown that approximation by orthogonal polynomials is better than
the approximation by using the code RESINT (Eglais, 1981). An exception is mode 17
for which a more accurate result is obtained by the code RESINT. Using the program
APROX the optimum number of terms in the regression equation can be determined
more accurately. However, the best approximations were obtained using the local

quadratic approximation.
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Table 1. Relative Root Mean Square Errors for different eigenfrequencies in 35 verification points.
* - optimum number of terms (see figure. 4, mode 5).

Mode Mode Mode Mode Mode Mode Mode

4 5 7 8 13 14 17
RESINT r 3 7 4 5 6 8 7
(Eglais, 1981) [ E, | 1.752 | 0.600 | 2.040 | 1.860 | 1.890 | 1.530 | 1.050

r 3 7 4 5 6 8 7
Orthogonal E. | 1572 | 0600 | 1.986 | 1.932 | 1.692 | 1.494 | 1.212
polynomials r* 8 10 7 10 9 11 7
APROX E. | 0456 | 0474 | 1173 | 0471 | 0513 | 1.104 | 1.212

Local linear E, 0.60 2.04 1.155 0.60 0.894 1.545 0.963
approximation
Local quadratic E, 0.21 0.39 0.927 0.24 0.429 1.011 0.774

approximation

Possibly, this is because good approximations of the original functions (eigenvalues of
vibrating plate) can be obtained by the second order polynomials. In the first example
(23) the standard deviation for the local quadratic approximations is 1.59%, which is
much higher than for the orthogonal polynomials.

AAMEE (sl

hii]

1 4 5 B T B B 011 &2 12 M 15 % 17
Figure 4. Predicted (___) and actual ( ---- ) standard RRMSE versus number of terms in equation of
regression for mode 5.

7.3. Examples from Hock and Schittkowski

Eight other mathematical problems are utilized in our study. These test problems are
chosen from (Hock and Schittkowski, 1981) which offers 180 problems for testing
nonlinear optimization algorithms. We choose some problems which are studied in (Jin
et al., 2000) in order to compare the results with methods used by other authors —
Kriging (Sacks et al., 1989; Booker et al., 1999), Multivariate Adaptive Regression
Splines (MARS), (see Friedman, 1991), Radial Basis Functions (RBF) (Powell, 1987;
Dyn et al., 1986) as well as well known Second Order Polynomial Regression (PR)
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often used as synonym of Response Surface method (Giunta et al., 1994 and many other
researchers). We are using linear variable substitution in the original test functions in
order to transform the definition region of variables to [-1,1]. Here the indexing of
functions used in Jin et al., 2000 is employed.

A 100 point regular grid is used for the two-variable problems and a 125 point
optimized Latin hypercube designs for the three variable problems. Present results are
compared with results given in (Jin et al., 2000). Grid size M=10 for examples with two
variables and M=20 for example Fy, with 3 variables is employed. Additional n=100000
confirmation points was used for calculation of measures for prediction of accuracy:

R Square:
n

o Z(F(x)—ﬁ(xi))z

- , (26)
> Fox)-FY
Relative Average Absolute Error (RAAE):
Z|F(Xi) - IE(X|)|
RAAE = = , @7)
nOSTD
Relative Maximum Absolute Error (RMAE):
F(x)-F(x
RMAE = maxw, (28)
i<isn STD
where STD stands for standard deviation
> Fox)-FY
STD =1|-= (29)

n

7.3.1. Function Fg

F, (x) = [30 + (x, +5)sin(5x, +5)[4 +exp(- (2.5%, + 257 ) @0
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Fg Approximated 5 Cross-validation of function Fg
\ |
1 I
Il
31 A\
7 \ k=50 | |
z U\
21 A\ RealRMSE - |
PR / [\
N/ NV
Y , ka0 =3
Residual MSE —~— A
0 I — ——— =
5 10 15 20 25 30 35 40
Number of Terms
Figure 5. Approximated function Fe. Figure 6. Cross validation scores of approximation Fe.

Table 2. Accuracy of methods used for test function Fs. * - Results for MARS, RBF and Kriging are taken
from (Jin et al., 2000), OP — orthogonal polynomials.

MARS* | RBF* | Kriging* PR OoP
R? 0.9924 | 0.9610 | 0.9999 | 0.2738 | 0.9998

RAAE | 0.0471 0.118 | 0.00417 | 0.675 | 0.0083

RMAE 0.921 1.40 0.0994 2.48 0.0683

This function is defined as high order nonlinear. Optimum number of terms r=33
obtained by 33-holdout. It is seen that the OP approximation is very accurate, however,
Kriging gives slightly better result.
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7.3.2. Function F;
F, (x) =sin(5mx, /6) cos(0.1257K, ) (31)

F, OP Approximation (20 terms) F7 9-th order polynomial approximation

S

N

NNy

—_/ —
-0.5 —~-1.0 T —
-1.0 05 -1.0 10
28 X
Figure 7. Original function F7 and its approximation polynomials of various order. OP — 20 terms,
RMSE=0.0005; 9-th order polynomial - 55 terms, RMSE=0.00319; 7-th order approximation - 36 Terms,

RMSE=0.0284; cubic approximation - 10 terms, RMSE=0.3829

Table 3. Accuracy of methods used for test function F;. * - Results for MARS, RBF and Kriging are taken
from (Jin et al., 2000).

MARS* | RBF* | Kriging* PR OoP

R? 0.6605 | 0.9892 | >0.9999 | -0.0204 | >0.99999
RAAE 0.451 0.0700 | 0.00168 0.846 0.00043
RMAE 3.180 0.653 0.0702 2.13 0.0038
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Residual RMSE

2 4 6 8 1012 14 16 18 20 22 24
Number of Terms
Figure 8. Cross validation scores of approximation F-.

This function is defined as high order nonlinear. Optimal number of terms r=20,
obtained by 33-holdout. The OP method gives the best approximation.

7.3.3. Function Fg

F, =sin(3x, +3x, +2) +9(x, — X, —4.5x, +7.5x, +2 (32)

Exact function £ Fs approximated (6 terms)

Figure 9. Exact and approximated (with 6 terms) function Fs. R?*=0.9947, RAAE=0.0644, RMAE=0.153
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Table 4. Accuracy of methods used for test function Fs. * - Results for MARS, RBF and Kriging are taken
from (Jin et al., 2000).

MARS* | RBF* | Kriging* PR OoP
R? 0.9954 | 0.9842 | 0.9997 | 0.9947 | >0.9999

RAAE | 0.0416 | 0.0443 | 0.00312 | 0.0644 | 0.00247

RMAE 0.593 1.21 0.321 0.153 | 0.00918

OP with six best terms for approximation gives the same result as second order
polynomial (PR) approximation. This is enough accuracy for practical applications,
although OP with 50 terms gives more accurate approximation.

Cross validation of function F8

0.1

RMSE

Residual RMSE

0.01 -
Real RMSE

0.001 4

5 10 15 20 25 30 35 40 45 50
Number of Terms

Figure 10. Cross validation scores of approximation Fsg.
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7.3.4 Function Fyg

Fio(X) = i fi(x)?,

where f,(x) =-0.01i +exp

u, =25+ (~50In(0.02i))**, i=1,...

FLo(x1,0,x5) Exact function

Figure 11. Original function Fi and its OP approximation (x, fixed equal to zero)

(ui -12.8x, - 12'8)(2.5x3+2.5)

,99

Fo(x1,0,x5) OP approximation

49.95x, +50.05

(33)

Table 5. Accuracy of methods used for test function Fio. * - Results for MARS, RBF and Kriging are taken

from (Jin et al., 2000). (OP with 50 terms from 8000 base functions)

MARS* | RBF* | Kriging* PR OoP
R? 0.7434 | 0.7441 | 0.7628 | 0.1868 | 0.9175
RAAE 0.340 0.324 0.229 0.763 | 0.2083
RMAE 244 251 3.50 2.08 2.353

OP gives the best result excluding RMAE, which is slightly better for PR. This function
seems to be too complex for approximation with only 125 point experimental design.
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7.3.5. Noisy function Fy3

F5(X) =12.5%} + 25x; — 25x,X, — 35X, — 35X, + £(X,, X,) (34)

where g(x1,X,) is a normal noise with mean equal to zero and standard deviation
0=3.5426

Noisy function F, OP Approximation of = £(x;,x,)

Figure 12. Noisy function Fy; and its OP approximation

Table 6. Accuracy of methods used for noisy test function Fi3. * - Results for MARS, RBF and Kriging are
taken from (Jin et al., 2000).

MARS* | RBF* | Kriging* PR OP
R? 0.9982 | 0.9849 | 0.8758 | 0.9997 | 0.9997

RAAE | 0.0554 | 0.0884 0.400 0.0119 | 0.0119

RMAE | 0.237 0.710 2.74 0.0676 | 0.0676

PR and OP approximations here are identical and both give the best result, because OP
method found a second order polynomial with 6 terms to be the best approximation.

20

\\ [ Fimal RMSE
— = E;E‘Iﬂ-iduﬁ
15 k=173 i
— =]
=10
L r
o 10
=
e i
5 i""‘“-—-—-w:r-\...rﬂ-" IV LT
[u]

1234567 8 9101112121418
Humber of Terms
Figure 13. Cross validation scores of approximation Fis
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7.3.6. Some other functions

Other functions of two and three variables, tested by Jin et al., 2000

F, (x) = (10x, —1)® +100(x, — X, )* +10000(x, — X;)?, (35)

F, (x) =5.3578547(20x, +90)° +0.8356891(20x, +90)(10x, + 35) )
+37.293239(20x, +90)-40792.141 ,

F,(X) =12.5x7 + 25x2 — 25x,X, — 35X, — 35X, 37)

are not interesting for approximation because the OP approximation for these functions
give the exact solution. These functions can be built with given base functions. These
examples show only that selection algorithm works correctly.

7.4. Two-bar structure problem

A two-bar structure design problem adopted from (Jin et al., 2001) is employed as an
example in our study. Here three functions Y;, Y,, Y5 should be approximated. A 73-run
optimized Latin hypercube experimental design and grid size 20 was used for the OP
approximation. These functions are as follows

Y, (x) =5% 1,/ (L50x, + 750)" + (400x, +600)’

V.00 = 1500004/ (150x, + 750)* + (400x, +600)’
2 571(30x, +50)(400x, +600)
m’ 210000[6.25 +(30x, + 50)2]
YB(X) = 2 2-
8|(L50x, +750)” + (400x, + 600

(38)

Table 7. Accuracy of methods used for two-bar structure problem. * - Results for RBF and Kriging are taken
from (Jin et al., 2001).

RBF* Kriging* PR OP
R? RMAE R? RMAE R? RMAE R? RMAE
Y: | 0.9994 | 0.2460 | 0.9999 | 0.0041 | 0.9996 | 0.0903 | 1.0000 | 0.0002
Y, | 0.9747 | 1.7729 | 0.9985 | 0.4488 | 0.9036 | 1.5027 | 0.9983 | 0.2724
Yo-Ys | 0.9957 | 0.6703 | 0.9998 | 0.1190 | 0.9832 | 0.6065 | 0.9994 | 0.1784
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Y, Exact function Y, OP approximation

Figure 14. Exact function Y, and its OP approximation (xs value fixed equal 0)

Y,(X,X5), X,=6(0.1/3) , Exact function Y,(X1,X,), X;=&(0,1/3), OP approximation

Figure 15. Approximation Y, as a two-variable function, when third variable are normal noise with mean
equal to zero and standard deviation 0=1/3 (a 100-point two-dimensional experimental design is used).
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Y, with Noise, Cross-validation
200 :

Real RMSE

5 10 15 20 25 30
Number of Terms

Figure 16. Cross validation scores of approximation Y.

In this case the optimal number of terms r=14. As can be seen in figure 16 the curve of
residual RMSE used by approach of Eglais has not a distinct break. The leave-one-out
cross validation (k=1) and ten-fold bootstrap (k=10) give wrong suggestions for
choosing of r (too large values). A 1/3 holdout (k=33) suggests r to be about 20.
Repeated holdout with 60=100-2x20 points left for confirmation (k=60) gives correct
value r=14.

7.5. Robot arm function

A function commonly used in the neural network
literature is the robot arm function. A robot arm
with 4 segments is considered. The shoulder of
the arm is fixed at the origin in the (u,v)-plane.
The segments of this arm have lengths Iy, I,, |3,
- and ly. The first segment is at angle ¢; with

respect to the horizontal coordinate axis of the

plane. For k=2,3,4, segment k makes angle ¢y
with segment k-1. The end of the robot arm is at
(see figure 17):

4 j

S u:Zchos%qukE
/ \ J= =

, 39

4 ] &5

Figure 17. Robot arm V= le Slnﬁﬁl)k E

J: =




26 AUZINS AND RIKARDS

and the response function F, is the distance from the end of the arm to the origin
expressed as a function of 8 variables ¢, ranging over [0,2m] and I ranging over [0,1],
(An and Oven, 2001):

Fr(¢l,¢2,¢3,¢4,|1,|2,|3,|4,):(U2+V2)%, (40)

Here we are using the Lack of Fit (Lof) estimation of the accuracy proposed by An and
Owen, (2001)

s XmaFe-Fo)
Loty g = N+E —\
WB)Y e (Fx)-F)

where B is the number of additional confirmation points. Unlike to estimation, proposed
in (an and Owen, 2001), we are employing additional points, not last of N points what
use An and Owen. Therefore we should obtain more pessimistic estimation of accuracy
of prediction.

This estimate can in unfavorable cases exceed one. When this happens, the
interpretation is that a simple model predicting of the function by its global average is
more accurate than our approximation.

An and Owen uses products of univariate Legendre polynomials of continuous
variable as base functions and coefficients for approximation are obtained by Monte
Carlo integration method, which needs a large number (>100000) observations. Any
way, the base functions are not ranked. Using 4065 base functions An and Owen
obtained Lof=19.2% and give the interpretation, that the chosen domain is too large for
such a local approximation with Legendre polynomials. An and Owen, 2001 give
conclusion that “Polynomial basis functions do not seem to be well suited for the robot
arm functio, over such a large range. Some failure of this type are inevitable for a high
dimensional approximation method, but at least the quasi-regression method gives a
clear indication of such failure having happened.”.

Here will be shown that ranking of orthogonal base functions built from discrete
orthogonal polynomials can give much better result. So, figure 18 shows the Lack of fit
versus Number of Terms in regression function.

(41)
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100

Lack of Fit (%)

0.1 T T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Number of Terms
Figure 18. Lack of Fit versus Number of Terms for robot arm function approximation.

The first approximation attempt showed that F, are independent of first variable — angle
@1 (itis clearly seen also from figure 17), therefore, later we are using only 7 variables.
Results presented in figure 18 was obtained by using base functions with limitations:
maximum degree d=6 for variables ¢,, @3, ¢4, and d=2 for others variables; maximum
order m=26. Total number of base functions Nj=27783, total number of regular grid
points — 823543. Here the values of original function in grid points was calculated
directly without local approximation. Value of Lof obtained with best 5000 functions
was 0.385%. To solve the problem about 2 hours computer time on 800 MHz Pentium
PC was necessary. It is clear that approximation with thousands of terms is not very
good result, but this example shows that ranking of orthogonal polynomials of discrete
variable can be more effective than use of large base of unranked functions.

Conclusions

The proposed method for metamodel building using tensor products of univariate
orthogonal polynomials of discrete variable as base functions combined with function
selection on the basis of augmented experiment (obtained with local smoothing
methods) can be efficient for problems with small and medium number of independent
variables (2 to 7). The method gives very accurate results in comparison with known
approximation methods: Multivariate Adaptive Regression Splines, Kriging, Radial
Basis Functions, Second Order Polynomial Approximation and Approximation with
Rational functions. Proposed space filling designs of experiments also are effective for
augmenting of experiments as well as for direct approximation.

Disadvantage of this approach is that it is relatively time-consuming for model
building in the case when number of independent variables is more than 5-6. However it
is very fast in response prediction when the model is built. It is very important for using
the metamodel in optimization.
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For the choice of optimal number of terms in the regression function the suggested
from many authors leave-one-out cross validation, 1/3-holdout and ten-fold bootstrap
methods can give miscalculation. Therefore, after first attempt (1/3-holdout or ten-fold
bootstrap test) suggested number of terms r, the repeated holdout test with N-2r
confirmation points is recommended.

For future improvements of this approach the methods to speed-up the model
selection in the case of large number of variables should be developed. Example of
Robot arm function shows that ideas of quasi-regression (An and Owen, 2001) using
orthogonal polynomials of discrete variable (instead of Legendre polynomials of
continuous variable) and Monte Carlo type estimation of required coefficients could be
promising.
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