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1. General information 

 
The KEDRO software was created in the Laboratory of Problems of Machine and Mechanism Dynamics in 

the Riga Technical University. The authors of the software are the engineering science doctors:  professor 

Jānis Auziņš, professor Aleksandrs Januševskis and associate professor Jānis Januševskis. The program 

implements the scientific ideas of the authors in the fields of computer experiment planning, metamodel 

creation and global optimization. 

The main characteristics of the program KEDRO v. 1.01: 

1. Number of experiment input factors – up to 12 

2. Number of experimental runs – up to 500 

3. The number of additional optimization constraints in the form of inequalities – up to 12  

 

The computer must have an Internet connection in order to use the optimized experimental designs from the 

Internet data base. 

The types of optimized designs: Latin hypercube (LH) type computer experiment plans optimized according 

to the Minimal Average Error, MaxiMin, Entropy, V. Eglājs’ potential energy criteria, classic factorial, 

Central composite, Box-Behnken type plans for implementing physical experiments. 

 

The metamodel (approximated input – response connection) creation methods: first, second, third order 

multivariable polynomials, locally weighted polynomial approximations, kriging.   

Optimization method: modified recurrent simulated annealing of the start for optimization of one criterion, 

the Pareto limit set generation for multicriterion optimization (if the specific version of the program contains 

multicriterion optimization). 

 

Operating systems supported by KEDRO: MS Windows XP, Vista, Windows 7, 8 and 10. 

 

 
1.1. KEDRO licensing 

KEDRO may be used only by natural and legal persons that have signed licensing agreements with the 

collective of authors of the software, represented by Aleksandrs Januševskis. Any other use of the software or 

any its component will be considered to be a violation of the Copyrigh Law of the Republic of Latvia (The 

Official Newspaper of the Saeima and the Cabinet of Ministers of the Republic of Latvia, 2000, vol. 11.; 2003, 

vol. 8.; 2004, vol. 10; 2007, vol. 6; 2008, vol. 3; “Latvijas Vēstnesis”, 2010, vol. 205), and the violator will 

be sued and punished with the full severity of the law. 

 
1.2. Installing the program. 

The program KEDRO along with all its folders must be copied from the data medium to the hard drive of the 

computer in a location convenient for the user. Afterwards the file KEDRO.exe must be started. When running 

the program for the first time, the license number or the user password may be requested. During the first time 

running KEDRO, the computer must be connected to the Internet. 

 
1.3. Starting the program. 

The file KEDRO.exe must be started. After the start, the license information is shown on screen. Pressing any 

key, after 5 seconds the license information disappears from the screen and work with the program may begin. 

The licensing information may also appear on the screen if the KEDRO program is not closed and the user 

switches to the window of some other program. Then, upon returning to KEDRO, the license window may be 

shown again. 
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1.4. Designations used 
 

Designations in bold signify matrices and column vectors. 

 

n –  the total number of runs in the experiment, including repeated runs. Also known as the number of 

design points. May not exceed 500. 

m – number of input variables (factors), may not exceed 12.  

L –  number of responses registered in the experiment measurements, may not exceed 12. 

xi –  i-th experiment design point in an m-dimensional space. Column vector, includes m components xij 

j=1,…,m 

yj –  j-th response function. 

yj(xi) –   value of the j-th response function in the i-th experiment design point. 

x1,…,x12  factor designations used in the analytical expressions in the KEDRO windows. 

y1,…,y12  response designations  used in the analytical expressions in the KEDRO windows. 

yi –  registered value of the response in the i-th experiment design point. Is used in cases where one specific 

response is selected from the twelve possible. 

𝑦̅ –  mean value of the response in the experiment points 

𝑦̂(𝒙)  – approximated response function 

𝑦̂(𝒙𝑖)  – value of the approximated response function in the i-th experiment design point 

𝑦̂(𝒙𝑖) − 𝑦𝑖   residual, difference between the predicted and measured response value in the i-th 

experimental design point. 

STD – standard deviation, square root from the sum of the squares of differences divided by the number of 

points minus the number of degrees of freedom (see lower in the text) 

 

1.5. Using graphs in the KEDRO program 
 

All two-dimensional graphs may be zoomed. To zoom the fragment of interest, move the cursor with a 

pressed-down left mouse button from the left upper corner to the right lower corner. To return to the initial 

size, move the cursor in the opposite direction. With the right mouse button pressed, the entire graph may be 

moved to the right, to the left, up or down. 

All three-dimensional graphs may be rotated with the left mouse button pressed. In some graphs, pressing the 

right mouse button may open the graph formatting window. 
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2. A simple example 
 

Work with KEDRO usually consists of the following steps: 

1. Creating the experimental design. Exporting the plan as a file for use in computer experiments. 

2. Conducting physical or computer experiments. 

3. Inputting the values of responses registered in the experiments. 

4. Approximation of the dependences of the response – input factors. Choosing the best approximation, 

evaluating adequacy, filtrating gross mistakes. Evaluating the significance of the regression function 

members. 

5. Output of the approximated polynomial models in files for use in other software 

6. Implementing global optimization, using analytical expressions in criteria and boundary functions 

that contain both input variables and the approximated response functions. 

7. Evaluating the precision of the located optimum, conducting additional experimental measurements. 

 

Next we will review these steps in a simple example. 

 
2.1. Beginning a new project 
 

 

 
Fig.1. Inputting the project name 

 

KEDRO project files are text files with the extension .prj  They contain information about the project: the 

experimental design, measured or calculated responses in the experiment points, as well as analytically entered 

response formulas, approximation parameters (if approximation has been conducted), comments (if they have 

been entered in the window Input Responses), optimization parameters (if optimization has been conducted). 

The program proposes a default name, adding a number to the previously saved file name. It may be replaced 

by a completely new name. 
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2.2. Inputting the experimental design 
 

 
 

Fig. 2. Selection of the experimental design type 

 

When entering a new experimental design, the following must be selected: 1) number of experimental runs n; 

2) number of factors m. 3) if the KEDRO package includes software for generating new designs (it is not 

included in the standard KEDRO package), the type of the generated design may be selected (Box-Behnken 

type designs for approximating physical experiment results with quadratic polynomials, D-optimal Latin 

hypercube (LG) and continuous D-optimal designs (mainly used for the approximation of the results of 

physical experiments),  Mean Square Distance (also known as Minimal Squared Error, MSE designs) LH and 

continuous designs, LH designs optimized according to the V. Eglājs potential energy criterion (used mainly 

for conducting numerical experiments, less efficient than the MSE plans). The KEDRO standard package does 

not include software for generating new plans, however, it includes a large number of optimized designs both 

in the folder KEDRO\Plans, and in the Internet data base. It must be noted that the generation of new designs, 

if it is available, requires significant use of processor time, therefore in this menu it is recommended to choose 

the type Custom. 

The number of factors in the standard KEDRO package may not exceed 12 and the number of runs may not 

exceed 500. 
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Fig. 3. The design input window 

 

In the design input window the user may define: 1) m – the number of factors (1<=m<=12).  

2) n – the number of experiment runs (2<=n<=500). When defining n, the following recommendations 

should be noted.  

The minimum number of experiment runs (points) n depends on the number of factors m and the anticipated 

degree of the approximation polynomial.  

 
In order to obtain high quality approximations, the recommended number of necessary points usually is: Nrek1 

> 1.5 Nmin – for linear,  Nrek2 > 1.6 Nmin – for quadratic and Nrek3 > 2.0 Nmin – for cubic approximations. 

It must be noted that the cubic approximations may not be used with Box-Behnken or factorial 3^m designs.  

When changing n or m, the layout of the input tables dynamically changes. 

3) The mnemonic names of the factors may not contain more than 15 symbols. The data of the table fields 

colored in gray may not be modified and are provided only for reference. 

4) Minimum and maximum values of factors. Must be corrected after the manual input or reading of the 

design.  

5) Table of design factor values. May be input and corrected manually, however, usually the design is 

obtained automatically using the methods described below. May be input and corrected manually. The 

Copy-Paste operation in this version may be executed only for some of the cells rather than for the entire 

table or its part. This applies to all KEDRO tables. (In the 1.97 Beta version full Copy-Paste is implemented 

in all KEDRO tables, however it is currently at the beta-testing stage.) 

6) The button ”Generate New Design” is not accessible if the software does not have an additional design 

calculation program. It is not included in the standard KEDRO package.  
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7) Reading the design from the Internet data base. The computer must possess a working Internet connection. 

This data base contains an enormous number of optimized experiment designs. If the data base does not 

include a design with a specific number of points, for example, 111, a design with a slightly lower or higher 

number of points (runs) should be chosen.  

8) A button for reading the design from a design file. The design file is a text .txt file formatted in a special 

way – its first row contains information about the plan (number of points, number of factors, number of levels, 

comments). The remaining rows contain the design itself: the first column contains the number of the run, the 

others contain the values of the design factors. The design files with the corresponding names can be found in 

the folder KEDRO\Plans. 

The names of the design files identify the type and size of the design. 

The design file name begins with a number that indicates the number of experiments n, followed by x, and 

then the following number that identifies the number of factors m. Int indicates that the design contains 

integers. If Int is not included in the name, then the design contains real (floating-point) numbers that are 

scaled in segments [-1.0,1.0] or [0,1.0]. The abbreviation BB indicates that it is a Box-Behnken design, 

abbreviation Dopt - a D-optimal design, abbreviation Egl – Eglājs design,  abbreviation Fact3^M – three 

level factorial design. The abbreviation LH indicates a Latin hypercube design that is intended for the 

approximation of determined functions. Examples of the design file name N x M (Int) [Dopt Egl BB 

Fact3^M] (LH).txt: 

5x2IntBB.txt is a Box-Behnken design that contains 5 runs for 2 factors whose integer values are arranged in 

3 levels in the range from -1 to 1;   

10x2IntDoptLH.txt is a D-optimal Latin hypercube design that contains 10 runs for 2 factors whose integer 

values are arranged in 10 levels in the range from 1 to 10 so that the determinant of the corresponding 

information matrices (assuming that the approximated function is quadratic) would be maximally large;   

16x3EglLH.txt is an Eglājs Latin hypercube design that contains 16 runs for 3 factors whose real (floating-

point) values are arranged in 16 levels in the range from  -1.0 to 1.0 so that the points would be maximally 

uniformly distributed in the factor space according to the Eglājs criterion, namely, that they would give the 

maximum amount of information on the approximated function. 

9x2IntFact3^M.txt is a factorial design 3^m that contains 9 runs for 2 factors whose integer values are 

arranged in 3 levels for each factor in the range from -1 to 1;   

After reading the design the table sizes and the assigned variable values are dynamically set. 

If the design type previously selected is not "Custom" (for example, "Box-Behnken", "D- optimal", 

"Factorial 3^M" or "Vilnis Eglājs"), then the program proposes to load an existing design of the specific 

type. If the specific design does not exist, it may be generated anew if the software package includes deisgn 

calculation programs, or the design may be found in the Web data base proposed. It must be noted that the 

generation of "Vilnis Eglājs" and "D- optimal" designs for large values of m and n may consume significant 

amounts of processing time and the user must decide how many iterations should be assigned for improving 

the design criterion and when the process should be interrupted. In the other cases ("Box-Behnken", 

"Factorial 3^M" ) the design may also be loaded if the specific design does not exist, since it will be quickly 

calculated before loading. When selecting "Factorial 3^M" designs, m must be less than 6, since in the 

opposite case the constraint for n<501 will be violated.  

For files whose names include „int" the factor values are level numbers, in other design files the factor values 

may be scaled in the segment [-1, 1] or [0,1]. The user does not have to worry about this after reading the 

design since in any case the design must be scaled to the physical range for each factor (see. below paragraph 

13 regarding design scaling). 

9) Inputting the design from one or more text files. They must be .txt files where the numbers are separated 

by space, tab or comma symbols. KEDRO does not support reading designs from MS Word or Excel files. 

The data reading method from the selected text file is defined in a special Insert Data from Issue File (...) to 

Factor Table dialog window. This window lets the user define the amount of data read (row number x column 

number). (Amount of Data = Rows x Cols) from the selected source – text file that must contain factor values 

arranged in columns. 



9 

 

 

If m factor values for n runs are read at once, then the source file must contain m columns with n rows, that is, 

it must be a rectangular matrix with the size (n x m). The amount of input data must correspond to the size of 

the source file. 

In order to correctly (unambiguously) read the data, it is necessary to define the absolute address of the factor 

table elements (Insertion Point), indicating the row and column where the first read value should be inserted. 

Similarly the array element of the source file (Point from what to start Reading) must be indicated from 

which the information reading will be started. 

The insertion of data in cases when the source file size is greater than the amount of readable data, may be 

illustrated with the following diagram. 

 

 
10) To visually evaluate the actual plan loaded in the factor table, viewing its projections, the user must 

press the button "View Current Design".  

11) Exporting the entered plan in various CAD, CAE formats. The current version does not support all 

formats, therefore some buttons are not accessible. 

12) Information on the source of the previous or current experimental design (if it has been read).  

13) By pressing the button „Rescale”, the design is obtained in the ranges of the real physical variables. The 

experimental designs are stored both in integer format and in floating-point format (scaled in the range from 

-1.0 to 1.0) (design space). Therefore, when the chosen design has been read, in order to transfer to the 

actual physical values of the factors, the minimal and maximal values of the range of actual changes of the 

factors must be entered in pos. 14 of the table (second from above) in the current window. During the 

entering of these values, the table of the experimental design values becomes inaccessible, however, the 

button "Rescale" is available. To obtain the specific physical values of the design – the so-called working 

space, the design must be recalculated (linearly transformed) by pressing the button "Rescale". 
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Fig. 4. Manually entered experimental design values and the factor name „X1” 

 

14) After manual design input, if the values have been entered in physical units, the button „Find 

Min&Max Values” should be pressed. 

 

 
Fig. 5. The design table after manual input and determining the range values Min and Max 

 

15) Pressing the button „Print”, the entered design may be printed out. 
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2.3. Inputting responses  
 

After inputting or correcting the design, the button OK or Cancel should be pressed (Cancel, if the changes 

were not successful). 

After entering or changing the design the approximation button in the menu Approximation is not available 

since the experiment responses must be entered or corrected.. 

 

 
 

Fig. 6. The menu Approximation after correcting or changing the experimental design  

 

The experiment run responses may be entered manually (not recommended since the user is almost certain to 

make mistakes, enter the data in the wrong order, enter an incorrect digit, etc.), by reading it from a text file 

or by entering in the form of a formula (a very useful option for understanding the properties of varios designs 

and approximation methods). 

Fig. 7 shows a filled-out response entry window: 

 

 
 

Fig. 7. Response entry window 

 

1) Number of response functions L. When correcting L, the layout of the entry table changes dynamically. In 

the KEDRO version 1.01 the number of responses may not exceed 12. If the number of responses exceeds 6, 

then the window shows two pages with response tables – the user may switch between them to visualize them 

one after another. 

2) Mnemonic names of the responses. Here the name of the first response is shown - Response1. In formulas, 

the designations y1, y2,…, y12 should be used instead of the mnemonic names. 
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3) A filled-out response table. It may be obtained, for example, by entering the corresponding values in each 

table cell from the keyboard or copying them from the clipboard. When manually filling in or editing the table, 

the user may transfer to the next cell by using the mouse or the keyboard arrow buttons. 

4) By pressing the "Input" field button "from File" (this button is available only if the screen shows the input 

tables for response functions, that is, if the corresponding page is activated), the values by columns may be 

entered from a previously prepared data file in text format of arbitrary size. The rules for the file formatting 

are the same as with reading the design from a text file. 

5) By pressing the "Input" field button "by Formula", the response values may be entered, using analytical 

expressions (formulas). 

6) By pressing the "Input" field button "Creating by", the values may be input, using special programs. 

7) The button "Find Min&Max" for finding the minimal and maximal values of the responses. It is intended 

only for control during response input, further the program will find these values automatically even if the 

button has not been pressed. 

8) The field "Project Comments" is intended for the input of text comments that are saved in the project file. 

9) The found minimal and maximal values of the responses after pressing the button "Find Min&Max" 

(pos.7). 

10) The button "Print" allows to print out the entered response values. 

11) To ensure comfortable data input, the mode of input should be selected depending on the specific number 

of factors and response functions. The data editing tables provide 3 modes: a) the factors and responses are 

arranged in tables in several pages (each page contains up to 6 variables); b) a single table is used for the input 

of response values; c) a single page is used for the input of factors and response values. The KEDRO version 

1.01 implements only mode a.  

 

For the sake of demonstration, let us read the responses from the text file Plana_Un_Atbilzu_teksta_Fails.txt 

The file contains the following information: 

Simple example of text file for input of experimental design or responses 

Any comment, for example the date, time of experiment executing 

1  1.0  24.5623 0.4 

2  2.0  18.1860 0.5 

3  3.0  11.258 0.6 

4  4.0  2.27116 0.7 

5  5.0 -0.279330 0.8 

6  6.0 -0.621703 0.9 

7  7.0 -1.65720 1.0 

8  8.0  4.21223 1.1 

9  9.0  9.81921 1.2 

10  10.0  17.248 1.3 

Any comment or other text 

Last row of the text file 

 

Let us read the value of the first response from this file, pressing the button Input from File: 

 

 

mk:@MSITStore:C:/Aleks/Kedro/Kedro1.chm::/html/hs2005.htm
mk:@MSITStore:C:/Aleks/Kedro/Kedro1.chm::/html/hs2015.htm
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Fig. 8. Selection of the file to be read 

 

 

 
Fig. 9. Response reading window 

 

To read responses from a file, the following must be entered: 

1 – the row of the response table from which the input should be started. Usually it is the first row, but this is 

not compulsory. 

2 – the response with which the entry should be begun. Different responses may be entered from different 

files. 

3 – how many response rows should be entered. By default it is proposed to fill out the entire table. 
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4 – how many responses should be read from the given file. By default, it is proposed to read all the responses. 

Important: If the number of planned responses L is greater than 1 (for example, 5), but it is not necessary to 

read all the responses, then the number of columns to be read must always be corrected – by default it will be 

L and a file input error may occur. 

5 – from which file row the reading should be started. The first rows of the file may contain other information. 

6 – from which file column the reading should be started. If it is not the first column then its left side should 

also contain numbers separated by spaces, tab signs or commas. After the last column to be read, the file may 

contain text information (separated by a space) which the program does not read. 

 

 

 
Fig. 10. Response entry window after reading from the file Plana_Un_Atbilzu_teksta_Fails.txt 

 

Important! KEDRO uses only the dot as a decimal separator! If the comma is set as the decimal 

separator in Windows, then using the Control Panel – Regional and Language Options window, button 

„Customize this format…”,  the dot should be set as the decimal separator: 
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Fig. 11. Setting the dot as the decimal separator 

 

2.4 Conducting approximations  
After entering the responses in the main menu, the menu Approximation-Approximate becomes available: 

 
Fig. 12. Part of the approximation window 
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Figure 12 shows the results of linear polynomial approximation for the entered data. For approximation, global 

polynomial (linear, quadratic, cubic), locally weighted polynomial or kriging methods may be chosen. The 

essence of the methods is explained below. 

Attention! Sometimes after making changes in the input data, when opening the approximation window the 

result of the previous approximation is shown with the Approximate button inaccessible (see figure). In that 

case a different degree of approximation should be chosen, the approximation should not be conducted, the 

necessary approximation should be chosen again and then the button Approximate should be pressed. This is 

not an error, it is intended for cases when the approximation requires a long time. 

 

3. Controlling adequacy of approximations 
 

The left side of the table (see Fig.12) shows data that characterize the adequacy of the approximation. 

 

3.1. Cross-validation 
 

One of the main indicators of the adequacy and quality of approximation is the cross-validation error Sigma 

Cross. KEDRO uses leave-one-out-cross-validation or the so-called n-fold cross-validation error: 

 

 
n

yy
n

i iii

cross

  
 1

2

)(
ˆ

                                                      (1) 

 

where )(
ˆ

iiy   is the value of the approximated function for input factor value xi, if the approximation does not 

use the i-th experiment point. Successively discarding one of the experimental points, the program calculates 

the coefficients of the approximated model and the mean square difference between  the approximation 

without the discarded point and the response measurements in the discarded point. The cross-validation error 

is an evaluation of the so-called model prediction error. The prediction error is essentially the most important 

indicator of model quality, but theoretically it should be obtained by conducting a large number of additional 

runs and calculating the difference between the approximated model and the response values in points that 

have not been used for creating the model. Cross-validation is an approximate evaluation of the prediction 

error and it is obtained without conducting additional runs. By itself this indicator is not very informative since 

the size of the cross-validation error must be evaluated against the numerical value of the response. The 

relative error could be calculated in relation to the mean value of the response or the response range ymax-ymin, 

however such relative error measurements possess certain drawbacks. The mean value could be close to zero 

– then the relative error will be an unreasonably large number. The response range may turn out to be very 

large although the majority of the experimental points give an almost constant response value – then the error 

evaluation will be unreasonably reduced. This situation is shown in Figure 13. In relation to the mean value 

of the response (about 1.0) the error of approximation is insignificant. In relation to the response change range 

the error is very large. 
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Fig. 13. Linear approximation for an almost constant function  

 

 

A more objective evaluation of the relative cross-validation error is the division of the absolute error with the 

mean quadratic deviation of the response from the mean value STD (designated in the table as STDev of Exp) 

 

𝑆𝑇𝐷 = √
∑ (𝑦𝑖−𝑦̅𝑖)2𝑛

𝑖=1

𝑛−1
                                       (2) 

 

where 𝑦̅  is the mean value of the response in the experimental points 

 

𝑦̅ =
∑ 𝑦𝑖

𝑛
𝑖=1

𝑛
                                                (3) 

 

Relative cross-validation error (Sigma Cross%) as a percentage of STD: 

 

 

%100

ˆ
1

2

)(






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STD

n

yy
n

i iii

relcross                                          (4) 

 

This prediction error evaluation has the following good property: if the response is approximated with a 

constant, then the relative cross-validation error is 100%. Therefore, if the cross-validation error approaches 

100 percent, then the approximation is useless. If the error exceeds 100%, then the approximation is absolutely 

wrong and the result is worse than the assumption that the response does not depend on the values of the input 

factors! 

But, knowing this value and the values shown in the table - STD, 𝑦̅ (designation MeanExpValue) and range 

(designation Exp. Range), the relative error may also be calculated in relation to the mean value and the range 

of the response change. 

Cross-section of Response Surface

(Linear )

 with Experimental Points

               

1 2 3 4 5 6 7 8 9 10 11 13 14 16 18 19 21 23 25 26 28 30

  
  
  
  
  

1.018

1.016

1.014

1.012

1.01

1.008

1.006

1.004

1.002

1

0.998

0.996

0.994

0.992

0.99

0.988

0.986

0.984

0.982
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The evaluation of the cross-validation error is informative for the approximation quality of both physical and 

numerical (computer experiment) results. As can be seen, the cross-validation error in the example is greater 

than 100%, signifying that the linear approximation of these results is not acceptable. 
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3.2. Other measurements of the approximation quality 
 

The other numbers shown in the table are classic evaluations of natural experiment result analysis that are 

based on the residuals analysis (difference between the measured and approximated response values) and are 

used mainly for the polynomial approximations of physical experiments. For computer experiments and non-

parametric approximations (kriging and locally weighted polynomials) they are informative but cannot be 

interpreted with absolute precision.  

Mean Squared Error 

 

𝑀𝑆𝐸 = 𝜎̂2 =
∑ (𝑦̂𝑖−𝑦𝑖)2𝑛

𝑖=1

𝑛−𝑝
           (5) 

where p is the number of parameters in the regression function. 

Correspondingly the square root from the mean square error in regression analysis is known as the Sigma 

evaluation: 

 

𝑅𝑀𝑆𝐸 = 𝜎̂ = √
∑ (𝑦̂𝑖−𝑦𝑖)2𝑛

𝑖=1

𝑛−𝑝
         (6) 

In the table it is designated as Sigma. Just as the cross-validation error, the relative Sigma value is calculated 

in relation to the standard deviation from the mean response value: 

𝜎̂𝑟𝑒𝑙 = 100%
𝜎̂

𝑆𝑇𝐷
                  (7) 

 

This value is designated in the table as Sigma% 

Here it should be noted that large values of residuals always indicate a bad approximation or the presence of 

gross errors in the input data. However, small residual Sigma values and Sigma% are no guarantee for a precise 

approximation. 

 

3.3. R2evaluation 
 

In regression analysis, the so-called R2 evaluation and its more objective variant– adjusted R2 are popular: 

 

𝑅2 =
𝑆𝑆𝑅

𝑆𝑆𝑇
= 1 −

𝜎̂2(𝑛−𝑝)

𝑆𝑇𝐷2(𝑛−1)
                            (8) 

and 

𝑅𝑎𝑑𝑗
2 = 1 −

𝑛−1

𝑛−𝑝
(1 − 𝑅2) = 1 −

𝑆𝑆𝐸 (𝑛−𝑝)⁄

𝑆𝑆𝑇 (𝑛−1)⁄
              (9) 

 

Here SSE is the Sum of squares due to error with n-p degrees of freedom: 

 

𝑆𝑆𝐸 = ∑ (𝑦̂𝑖 − 𝑦𝑖)2𝑛
𝑖=1                   (10) 
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𝑀𝑆𝐸 =
𝑆𝑆𝐸

𝑛−𝑝
= 𝜎̂2 =

∑ (𝑦̂𝑖−𝑦𝑖)2𝑛
𝑖=1

𝑛−𝑝
          (11) 

 

SSR is the Sum of squares due to regression: 

𝑆𝑆𝑅 = ∑ (𝑦̂𝑖 − 𝑦̅𝑖)2𝑛
𝑖=1               (12) 

with p-1 degrees of freedom 

 

SST is the Total sum of squares: 

 

𝑆𝑆𝑇 = ∑ (𝑦𝑖 − 𝑦̅𝑖)2𝑛
𝑖=1                   (13) 

with n-1 degrees of freedom 

𝑆𝑇𝐷 = √
𝑆𝑆𝑇

𝑛−1
                           (14) 

 
It is obvious that 

𝑆𝑆𝑇 = 𝑆𝑆𝑅 + 𝑆𝑆𝐸                 (15) 
 

Approximation is considered to be good if the adjusted R2 criterion is close to 1. In regression analysis this is 

often interpreted so: the value of the adjusted R2 criterion 0.99 explains 99% from the change of the response 

during the experiment runs. This is not always completely true, however, small R2  and adjusted R2 values 

always signify a bad approximation. 

 

3.4. F-criterion 
 

The F-criterion for experiments without repeated runs (designation F-Crit 99%). The classical adequacy 

criterion used in regression analysis is  

𝐹 =
𝑆𝑆𝑅 (𝑝−1)⁄

𝑆𝑆𝐸 (𝑛−𝑝)⁄
                      (16) 

 

In order to believe with a given confidence probability (usually 0.95 or 0.99) that the created approximation 

model is better than the assumption that the response of the physical experiments does not depend on the input 

factors, the value of the F-criterion must be greater than the value of the inverse cumulative F-distribution 

with p-1 degrees of freedom for the numerator and n-p degrees of freedom for the denominator. KEDRO 

calculates the critical value for the confidence probability 0.99 

In inverse F-distribution tables, Excel, MathCad programs as well as using Internet online calculators (for 

example, http://www.danielsoper.com/statcalc3/calc.aspx?id=4) the critical values for different confidence 

probabilities may be obtained. Usually in these tables the value of confidence level is used that is equal to 1 

minus the confidence probability, therefore KEDRO uses confidence level 0.01.   

For computer experiments and non-parametric approximations the F-criterion is not an absolutely safe 

evaluation of adequacy but it has informative character and attention should be paid to it. For example, figure 

12 shows a case where the linear approximation of results does not give an adequate model: the value of 

relative cross-validation is greater than 100% and the value of the F-criterion is greater than the critical value 

for the confidence level 0.01 

http://www.danielsoper.com/statcalc3/calc.aspx?id=4
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However, this can also be clearly seen in the graph (button View Graphs): 

 
Fig. 14. A graph of an inadequate linear approximation  

 

3.5. Determining possible outliers 
 

The table data Max Error, Max Rel Error and Cook’s distance and the numbers of the corresponding 

experimental points may allow to detect outliers in the input data. Max Error and Max Rel Error signify the 

maximum difference between the experimentally determined and approximated function values. The 

designations Bad point and Suspicious point do not guarantee that the corresponding run has a gross error. 

They signify candidates for additional checks. Cook’s distance is the maximum difference between an 

approximation where the experimental point is used and an approximation where it is not used. Such a point 

is also a candidate for a check. One of the safest types of checks is the elimination of the suspicious point. If 

thereby the relative cross-validation error is significantly reduced, it signifies that either this point is in error 

(mistakenly entered, a mistake in measuring the response, etc.) or the program is incapable of creating an 

adequate model in the vicinity of this point. 

Figure 15 shows the linear approximation evaluation table for the previously described example with 

comments  
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Fig. 15. Evaluation of the linear approximation quality 

 

Let us implement the quadratic and cubic approximation of the same data. 

 
Fig. 16. Linear, quadratic and cubic approximation for the example results 

 

As can be seen in Figure 16, quadratic and cubic approximations are of a significantly higher quality than 

linear approximation. Cubic approximation has a slightly better R2 and sigma criteria values, however, the 

cross-validation error clearly shows that quadratic approximation is the best. 

Figure 17 shows the graph of the quadratic approximation  
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Fig. 17. Graph of the quadratic approximation 

 

 

 

3.6. Graphic checks of residuals. 
 

The button Residuals in the approximation window allows to visually analyze residuals (the difference 

between the measured and the approximated responses). One of the most important residual analysis windows 

is Histogram, Fig. 18. 

 

 
Fig. 18. The histogram window for residuals  
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It is particularly significant for the analysis of results of physical (natural) experiments. In that case the 

residuals should be approximately distributed according to the normal Gauss probability density distribution, 

the histogram columns should form a bell-shape, see Fig. 19. 

 
Fig. 19. A histogram that corresponds to the normal distribution. 

 

The histogram will never correspond to the normal distribution precisely. The correspondence should be 

approximate. In the case of a small number of experimental points, the histogram should also have a small 

number of columns selected, for example, 3 columns for 10 runs, as in Fig. 18. 

 

 

4. An example of two factors and 50 points. Computer experiments. MSE LH 

design 
 

4.1. Inputting experimental designs from the Internet database 
 

Pressing the button (pos.7) Load Design from Web Database in the window Input Factor Values by 

Experimental Design (see Fig. 3) we obtain: 

 

 
Fig. 20. Window for the database of experimental designs 

 

Let us choose Latin Hypercube Mean Square Error and Load Design 



25 

 

 

After reading the design variables must be assigned names and the design must be scaled according to the 

minimum and maximum values of the physical variables. For example, let us scale both variables to the 

interval [-1, 1] 

 
Fig. 21. The design table prior to scaling  

 

Pressing the button Rescale we obtain the design in the range of the real physical variables. 

 

Using the button View Current Design we can view the design and using the button Copy to Clipboard and 

2D projection we can copy the image of the design as a bitmap or metafile. The copied image can be copied 

from the clipboard to another program, for example, Microsoft Word. It is recommended to use the metafile 

format for copying since it is provides a higher quality format of vector graphics. 
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Fig. 22. The design read from the database after scaling 

 

Using the button Save Experiments for ANSYS the design can be saved in a text file that can be read from 

the FEM  programs ANSYS 

 

4.2. Inputting responses using analytical functions 
 

In this example we will enter an analytical function instead of real measurements. KEDRO allows entering 

various analytical expressions, using the designations x1, x2,…, x12 for variables. In the optimization 

window, the responses y1, y2, …, y12 can also be used as variables. It is compulsory to write x1 rather than 

the mnemonic name of the variable. 

A list of KEDRO functions is given in Appendix 1. In formulas lower and upper case letters are considered to 

be equal. 

 

KEDRO contains several functions intended specifically for testing. One of them is the „Standard test 

function”: 

 

 
   


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
m
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xf
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1
                                        (17) 

 

This multi-argument function is difficult to approximate with polynomials, it has exactly one minimum and 

one maximum in the region [-1, 1]m. The approximation prediction precision of an analytically entered 

function may be tested in randomly generated points - their number can be set in the window Options for 

Approximations (Fig. 31.). 

Relative error in the test points TestSigma is calculated according to the formula: 

 

 
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where wi – test points (i = 1,…,n), )( itest wf


 - the approximated test function value in the test point, testf - the 

mean test function value in the test points. This evaluation can be used for all analytically entered responses 

and may be compared to the predicted prediction evaluation Sigma Cross% , expressions (2, 3, 4). 

 

 

 
Fig. 23. Entering an analytical function in the response input window 

 

Noise with normal distribution and mean value zero may be added to the entered responses, where standard 

deviation is set as a percentage to the standard deviation of the calculated data from the mean value. Let us 

input noise level zero. Figure 24 shows the appearance of the Standard test function 

 
Fig. 24. Standard two argument test function 

 

The comments window allows entering any text. 

Let us test the global polynomial approximations: 
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Fig. 25. First, second and third order polynomial approximation tables 

 

The best cross-validation error is given by the third order approximation. Let us verify this graphically.  

 
Fig. 26. The approximated function and the precise function 

 

As can be seen, in the corner points the functions are significantly different – this is characteristic for higher 

order polynomial approximations. The analysis of residuals does not show a significant difference from 

normal distribution and does not indicate the existence of a systematic error. The actual approximation error, 

calculated in 10 000 test points, is approximately 0.16%, which is a rather good indicator. However, this error 

may be calculated only for a known response function. The adjusted R2 criterion shows that the approximation 

explains about 97% of the change of the response. The F-criterion with at least 99% percent probability 

indicated that the approximation is adequate (that is, the response is dependent on the inputs). 
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4.3. Evaluation of the significance of regression members 
 

Pressing the button View Coefficients in the window Approximation of Response Surface it is possible to 

verify the polynomial approximation coefficients, evaluate the significance of the regression function 

members and to save in text files the coefficient values and the polynomial expressions for use in other 

programs.   

 

In the window Approximation Coefficients – Normal, the table shows the polynomial coefficients , if non-

normalized physical values are used as variables.  

𝑦̂(𝒙) = ∑ 𝛽𝑖𝑔𝑖(𝒙)𝐿
𝑖=1                                 (19) 

 
 

 
Fig. 27. Two factor cubic approximation coefficients  

 

 

These coefficients cannot be compared to each other by value, since the norm for each regression function 

member gi(x) may be significantly different: 

 

‖𝑔𝑖‖ = √
1

𝑉(𝑫)
∫ 𝑔𝑖(𝑥)2𝑑𝒙

 

𝑫
                                                 (20) 

 

where V(D) signifies the volume of the experimental region D. 

Inputting the normalized regression function members: 

𝑔𝑖
∗(𝑥) =

𝑔𝑖(𝒙)

‖𝑔𝑖‖
                                                           (21) 

we obtain 

 

𝑦̂ = ∑ 𝛽𝑖
∗𝑔𝑖

∗(𝒙)𝐿
𝑖=1                                                        (22) 

 

The normalized coefficients 𝛽𝑖
∗ = ‖𝑔𝑖‖ ∙ 𝛽𝑖 may be compared to each other. A larger normalized coefficient 

indicates a larger contribution of the corresponding member to the regression function. This comparison is 

not absolutely precise since the regression function members are not orthogonal, that is, the equality  

 

∫ 𝑔𝑖(𝒙) ∙ 𝑔𝑗(𝒙)𝑑𝒙 = 0, 𝑖𝑓 𝑖 ≠ 𝑗
 

𝑫
                                    (23) 
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does not hold. Therefore the regression members are aliased and they may partially compensate one another. 

This means that by discarding one of the regressions function members the values of the other, non-discarded 

members will be obtained using the least squares method. However, despite this the information on the 

significance of members obtained by normalization may be used to reasonably evaluate the significance of 

the members. In the case of linear approximation this evaluation will be as good as the evaluation of the 

traditional regression analysis. 

The values of normalized members are shown in the table: 

 

 
Fig. 28. Values of normalized coefficients  

 

The significance of the corresponding members may also be evaluated using the so-called Pareto graphs: 

Normalized – Significance 

 

 
Fig. 29. Evaluation of the significance of polynomial regression coefficients 
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In Pareto graphs the significance of coefficients is normalized in such a way that the sum of the significances 

is 100%. As can be seen, in the example the linear and the cubic members are the most significant. 

 

 

 

The option Normalized allows to mutually compare the contribution of each member to the mathematic model. 

For this purpose, the mean quadratic value of each regression function member is calculated and the members 

are normalized so that  

𝒚̂ = ∑ 𝜷𝒊𝒈𝒊(𝒙)𝑳
𝒊=𝟏                                                              (24) 

 

Pressing the button Save Expressions the approximation polynomial expressions may be saved in a text file. 

 

An important note: 

The Approximation coefficient and Significance windows apply only to global parametric approximations, 

the information given in them cannot be applied to kriging and it can only partially be applied to locally 

weighted approximations! 
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4.4. Locally weighted polynomial approximations 
 

The theory on various approximations is given below, p. 5. 

 

Let us implement a locally weighted 3rd order polynomial approximation 

 

 
Fig. 30. Locally weighted cubic approximation, default bandwidth parameters. 

 

 

 
Fig. 31. The locally weighted approximation parameter window with default values 

 

Number of Test Points applies only to analytically entered functions for which the approximation error may 

be precisely determined. 
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For locally weighted approximations it is possible to change the approximation parameters in the window 

Options for Approximations. Unchecking Automatic, it is possible to change the bandwidth and to choose 

other weight kernels. The result must be checked by comparing the cross-validation errors of approximations. 

It is recommended to use the Gauss kernel, the bandwidth equal to the number of design points and to vary 

the coefficient Alpha. In practice, it means to regulate the smoothness of approximation. The zero value of the 

Alpha coefficient signifies global polynomial approximation – all design points will have the same weight 

coefficient. By increasing the Alpha value, the values of the approximation function in the design points 

approach the registered response values. Unfortunately this does not mean that the approximation becomes 

more precise. It becomes less smooth and may start to adapt to noise contained in the response function. The 

only possibility to evaluate the precision of the approximation prediction is the cross-validation criterion. It 

must be noted that in the case of local approximations the cross-validation criterion value is pessimistic, that 

is, it is usually worse than the true evaluation. 

 

By changing the value of the coefficient Alpha in the window Options for Approximation to 27 (Fig.32a), 

the cross-validation error is improved to the value 5.3%, but the actual error is approximately 0.021%, see 

Fig. 32. 

 

Note. In KEDRO v. 1.01 the parameters of locally weighted approximations are the same for all 

responses 

 

 
Fig. 32. Table showing the adequacy of the approximation (optimized locally-weighted approximation 

parameters) 
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Fig.32a. Locally-weighted approximation parameters set in the window Options for Approximation  

 

 

 

 
 

Fig. 33. Locally-weighted cubic approximation and the precise response function (to the right) 

 

 

 

4.5. Approximation with kriging 
 

For kriging approximation, for each response m+1 parameters must be defined (the so-called hyperparameter 

values). KEDRO also provides default values, however in practice they must always be corrected in the 

window Options. 
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Fig. 34. Kriging Option window 

 

 

In practice it is not advised to change the first parameter (Exponent), leaving it as 2. The other parameters may 

be changed manually, controlling the changes of the cross-validation error. 

An important remark: kriging approximations require significantly more processor time which rapidly 

rises depending on the number n of design runs! 

It is possible to carry out automatic hyperparameter optimization by pressing the button LH Sampling 

In the window LH sampling the number of steps for optimization searching must be entered. This may require 

large amounts of processor time therefore it should first be checked by entering the value 20. To find optimal 

hyperparameter values, several thousand steps are required – this may take several hours of computing time 

if the number of design points exceeds 200. 

Afterwards we press the button Run LH sample for all functions 

 

 
Fig. 35. Kriging options window 

 

After the optimization of the kriging hyperparameters the adequacy of the approximation significantly 

improves, see Fig.36. 
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Fig. 36. The adequacy table for kriging approximation after parameter optimization 

 

In one-dimensional graphs it is possible to view the cross-sections of the approximated function and the precise 

function in the same graph with added experimental points, see Fig. 37. 
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Fig. 37. Cross-section graphs for the approximated function and the precise function (top left - global cubic, 

top right – locally-weighted cubic, lower left – global linear, lower right - kriging) 

 

As can be seen, in this example with a determined response, kriging is more precise than the locally-weighted 

polynomial approximation. The relative error of approximations for 10 000 test points (as a percentage of the 

standard deviation of the function values from the mean value) is 15.9% for the global cubic, 2.1% for the 

locally weighted cubic, 0.46% for kriging and 42% for the global linear approximation. 

Important: Experimental points in this graph should be considered to be scatterplots, since the 

approximation graphs are cross-sections for two argument response functions for the value x2 = 0.0, 

each experimental point has its own value of the component x2 that is not visible in the graph. This 

applies to all graphs where the number of the graph variables is lower than the total number of the 

experiment input factors. 

 

 

For the approximation of numerical experiments, kriging is frequently the best method. For example, the same 

response function, using only an 11-point MSE LH design:  
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Fig. 38. 11 point 2 factor MSE-optimal LH design 

 

and kriging hyperparameters optimized after cross-validation, an approximation is obtained with the relative 

error 12%, see Fig.39. If the mean relative error would be calculated relative to the range of the response 

change, then it would be only 4% 

 

 
Fig. 39. Kriging approximation for an 11 point experimental design (to the left) and the precise function (to 

the right) 
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Fig. 40. The cross-section graph, the precise function is in blue, the kriging approximation is in red, 11 point 

2 factor experiment 

 

If significant noise is added even to a 50 point two factor Standard test function with 30% standard deviation, 

then see Fig.41. 
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Fig. 41. The cross-section graphs for the approximated and the precise function with very noisy 

measurements (Top left – global cubic, top right – locally weighted cubic, lower left – global linear, lower 

right – kriging) 

 

The relative error for global cubic approximation is 22%, the actual error for local cubic approximation is 

21%, for global linear – 42%, for kriging – 21.5%.  As can be seen, in the case of noisy responses, kriging 

does not give better results than locally weighted approximations 
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5. Optimization 
 

Optimization is possible after the approximation of results. KEDRO may also be used to solve optimization 

tasks where approximation is not used (selecting Optimization - Direct without Yi), see Fig. 42. 

 

 

 
Fig. 42. Starting optimization 

 

 

 
Fig. 43. The optimization window 

 

Information to be entered: 

1. The target function. The expression may contain input variables x1, x2, x12, approximated responses 

y1,.., y12. 

The functions described in Appendix 1 may be used. Multiplication must be signified by the asterisk 

symbol *. The dot must be used as the decimal separator in numbers. KEDRO only looks for the 

target function minimum. To find the maximum, the sign of the target function must be reversed. 

2. Number of iterations. It determines the precision with which the global minimum will be found. If 

locally weighted polynomials and kriging are not used in the approximation, then the number of 

iterations may safely exceed 100 000. 

If locally weighted cubic polynomials are used, the number of iterations should be increased gradually, 

beginning from few thousands. Kriging requires particular caution, 100 000 kriging iterations may 

require several hours of processor time. The minimization runs must be repeated, gradually increasing 

the number of iterations and comparing the obtained results. 

3. The best result from repeated runs 

4. The result of the last run 

5. The value of the target function obtained in the current optimization process – changes during 

optimization. 
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6. Names of input variables (do not use names in expressions!) and the range of change. Type – zero, if 

the variable may have continuous values from the given range. If the variable is discrete, then Type is 

the discretization step, for example, Type = 1, if the variable is an integer. 

7. The acceptable range of responses yi. If Type=0, then the constraint is ignored, if Type = 1, then only 

the minimal value is taken into account, if Type =2, then only the upper constraint is active, if Type>2, 

then both the lower and the upper boundary is active. 

8. Constraint expressions f1, f2,…, f6. Notated in the same way as the target function. Can be entered 

after pressing the button Add Constraint. 

9. Acceptable minimal and maximal values of the constraint functions. Type has the same meaning as in 

paragraph 7. 

 

In the example, it can be seen that the constraint x1-x2 ≥ 0 is active. Let us compare the located minimum 

with the precise minimum of the “Standard test function”: 

 

 
Fig. 44. Minimization of the analytic function 

 

For the approximated function the minimal value -0.0895 was found in the point (-0.432, -0.432), where the 

precise function had the value -0.0913. For the precise function the minimum -0.0915 was in the point (-0.410, 

-0.410), meaning that the optimal criterion value was found with approximately 0.2% error. 

 

The meaning of other elements in the optimization window 

Using the button Criterion Sections the location of the optimum point and the constraint regions may be 

viewed visually, see Fig. 45. 
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Fig. 45. Visualization of the criterion cross-sections 

 

Pressing the colored rectangles 1, it is possible to turn on and off the graphs of the target function and 

constraints. The red point signifies the located minimum. The values of the invisible input parameters are the 

optimal values therefore the graph is called the criterion surface. 

The buttons Save File for plotting allow the user to save the graph in a file as a table that may be read from 

visualization programs, for example, Systat SigmaPlot, MathCad or Excel. 

 

5.1. Multi-criterion optimization 
 

KEDRO v. 1.01 also allows multi-criterion optimization (multiobjective optimization). The Pareto boundary 

surface is found and its analysis allows the user to select the preferred point from the set of many optimal 

solutions. 

 

For example, let us review the classic one variable two criteria Schaffer’s problem [5]: 

 

min 𝑓1(𝑥) = 𝑥2 

min 𝑓2(𝑥) = (𝑥 − 2)2
                                   (25) 

with the constraint 

 

−10 ≤ 𝑥 ≪ 10                                                     (26) 

 

The precise solution of the optimization task is shown in the form of a Pareto boundary set in Fig. 46. 
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Fig. 46. Solution of the Schaffer’s problem 

 

After entering two criteria in the KEDRO multi-criterion optimization window and limiting the number of 

points to be found by 100, we press the button Find Pareto Points, see Fig. 47. 

 

 
Fig. 47. Finding two criteria Pareto boundary set points 

 

 

Pressing the button Plot Pareto Points we obtain the image: 
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Fig. 48. Solution of the Schaffer’s problem with KEDRO 

 

By pressing the mouse button on any of the Pareto boundary set points the user can obtain full information 

about its: input factor, criteria and constraint function values. Of course, in criteria expressions the 

designations of the approximated functions y1,.., y12 can also be used. 
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6. Parametric and non-parametric approximations. 
 

Currently in regression analysis two different approaches are used: parametric approximation and non-

parametric approximation. In parametric approximation, the functional relation between the input and 

response variables is known (at least the user has for some reason chosen them), for example, in the form of 

some analytical function that contains parameters that must be adapted to the experiment data. For example, 

approximation of results with a linear function is parametric regression. A significant difference of non-

parametric regression consists in the fact that there is no a priori knowledge of the form of the actual function 

that should be found. In this case the responses are also modeled with functions that contain parameters, but 

the number of these parameters is very large and they do not have an easily interpretable and explainable 

meaning. The term “non-parametric” is not particularly successful but it has been accepted historically. The 

essence of the matter is that in the case of non-parametric approximation the regression function does not exist 

as an analytic expression that may be written in open form with unknown parameters. Sometimes parametric 

approximation is called “global approximation” and non-parametric approximation “local approximation”. 

In non-parametric approximation assumptions about the form of the regression function are not made, it is 

only assumed that this function is smooth (that is, it has first order derivatives – their values, however, are 

usually not calculated or used). 

Therefore parametric approximations give as a result an approximated model that can be written down in the 

form of an analytical function (regression function). The coefficients of this function 1, 2, …, L are found 

using the least squares method. L is the number of the regression function members (coefficients). A regression 

function that has linear coefficients , may be written as 

 

𝑦̂(𝒙) = ∑ 𝛽𝑖𝑔𝑖(𝒙) + 𝜀𝐿
𝑖=1                 (27) 

 

where  – noise added to the response, (variance), usually it is assumed that it corresponds to the normal 

distribution with the mean value zero and constant variance. In the subsequent formulas  will not be used in 

obvious form. 

 

Note. Bold symbols everywhere signify vectors or matrices. x signifies a vector column that consists of the 

input variables x1, x2, …, xm. 

 

6.1. Polynomial approximations 
 

The simplest and the most frequently used parametric approximations are polynomials with m variables. 

KEDRO uses first, second and third order polynomials. 

The number of members L for a first degree (linear function) polynomial with m variables (factors) is m+1, 

for a second degree (quadratic) it is (m+1)(m+2)/2, for third degree polynomial L = (m+1)(m+2)(m+3)/6. 

The minimal number of experiment runs necessary to implement polynomial approximation is equal to the 

number of the regression function members L. Experimental designs for which the number of runs is equal to 

the number of the regression function coefficients, are called saturated designs. The minimal number of 

members may be used only if it is clearly known that the experiment response model really consists of 

polynomial functions of input variables and does not contain noise (are determined).  

In practice saturated designs are almost never used, especially if the result of the response to be measured 

contains random or systematic error. Approximation with second degree polynomials historically is called the 

Response Surface Method (RSM), it is most frequently used in various type of engineering calculations. In 

this case practical experience shows that the number of runs for the approximation of physical experiment 

data must be 1.5 - 2 times greater than the minimal possible number of runs, that is, 1.5×(m +1)(m +2)/2 to (m 

+1)(m +2). It must be noted that in the case when the response function is difficult to approximate with second 

degree polynomials, increasing the number of runs using the same regression function does not lead to 

significant improvement of the approximation (reduction of the approximation prediction error). 



47 

 

 

 

Finding regression function coefficients that give the best correspondence to the experiment results usually is 

carried out using the Least squares method (LSM). The sum of the quadratic deviation  

𝛷(𝜷) = ∑ (𝑦𝑗 − ∑ 𝛽𝑖𝑔𝑖(𝒙𝑗)𝐿
𝑖=1 )

2𝑛
𝑗=1                (28) 

 

is minimized, where y1, y2,…, yn – registered responses n in the experiment points xj. 

The minimization of the total quadratic deviation is carried out by equating the partial derivatives 
𝜕Φ

𝜕𝑥𝑖
 to zero. 

Since the coefficients  in the quadratic deviation function are quadratic, then after equating the derivatives 

to zero a system of linear equations is obtained – once it is solved, the coefficient values are obtained that give 

the best fit of the regression function to the experimental data. 

 

6.2. Non-parametric approximations 
 

Non-parametric approximations are approximations for which the result – the mathematical model – may not 

be written down in the form of an analytical function. From the class of non-parametric approximations, 

KEDRO uses locally-weighted polynomial approximations and kriging. 

 

6.3. Mathematical foundation for locally-weighted polynomial approximations 

 

In locally-weighted approximation, for each point of the experimental space x*, where the user wants to find 

out the value of the predicted response 𝑦̂(𝒙∗), the quadratic deviation function is minimized, weighing the 

deviations from the experimentally obtained values depending on the distance of the specific experimental 

point xi from the point of interest x* : 

 

𝛷(𝜷) = ∑ 𝑘(‖𝒙∗ − 𝒙𝑗‖)(𝑦𝑗 − ∑ 𝛽𝑖𝑔𝑖(𝒙𝑗)𝐿
𝑖=1 )

2𝑛
𝑗=1          (29) 

 

where 𝑢 =  ‖𝒙∗ − 𝒙𝑗‖ – distance in scaled Euclid space [-1, 1]m between points x* and xj , (u)– weighing 

(that is, kernel) function. It is possible to use different weighting functions whose main property is the 

following: for  (0) they assume maximum values, k(u) decreases as the distance u increases. In function 

smoothing theory weights are chosen so that ∫ 𝑘(𝑢)𝑑𝑢 = 1
∞

−∞
, for weighted polynomial approximations this 

condition is not significant. For classic weighing functions the parameter of distance value is also used – once 

it is exceeded, the weighing function returns the value zero. This is called bandwidth, usually defining it by 

the so-called number of nearest neighbors. Points that are not included in the set of nearest  x* neighbors, are 

not taken into account when predicting the value 𝑦̂(𝒙∗). The most popular kernel functions are shown in the 

table: 

 

Table Popular kernel functions 
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In practice, the following weighing function with adjustable degree used by KEDRO has proved to be very 

easy and good to use [1]: 

 

𝑘𝐺(𝑢) = exp (−𝛼𝑢2)                                    (30) 

 
This weighing function does not require setting the bandwidth (number of nearest neighbors) – it is 

automatically reduced if the coefficient  is increased. 

 

6.4. Kriging method  
One of the non-parametric methods that is used more and more frequently, is kriging. The name of the method 
derives from the name of the South African mining engineer D.G. Krige, who created this method in the 
middle of the 20th century and used it for prediction of mineral deposits. Approximately at the same time this 
method was also proposed by L. S. Gandin, using it in meteorology. This high precision method views the 
response function as the implementation of a stochastic process. The mathematic form of the method is the 
following: 

  )()()(ˆ xxx zfy  ,  (31) 

where )(ˆ xy is the evaluation of the unknown response function, f(x) is a known, usually polynomial function 

of arguments  x and z(x) is an implementation for the stochastic process with a zero mean value, variance 2 
and non-zero covariance. Similarly to the polynomial response surface model f(x) determines the “global” 
behavior of the model in the experimental region. Frequently instead of f(x) a constant is used – the mean 
value of the response surface in the experimental points. 
Most frequently the spatial correlation function z(x) is used, for which 

    ),()(),(cov 2

jiji RZZ xxxx  , (32) 

where 2 is process variance, R is n × n size correlation matrix whose elements R(xi, xj) express the correlation 
between the experimental design points xi and xj. The correlation function is usually chosen by the user. For 
this purpose different functions may be used, but KEDRO uses the most frequently used Gauss correlation 
function: 

  



m

k

p

jkikji xxR
1

))(exp(),( xx
 (33) 

with p = 2 and m parameters , one for each dimension. Optimal parameter values for each approximation 
case are found, using the cross-validation method. 
Kriging in many cases gives very precise approximations that are more precise than those given by other 
methods. This method has great advantages for strongly non-linear response functions. Another advantage of 
the method is the fact that according to the original assumptions it is relatively simple to calculate the possible 
prediction error, assuming some fixed confidence interval, for example, 95%.  
However, the method also has its drawbacks. The most important – the method is quite labor intensive. Finding 

the parameters , using the cross-validation or the maximum likeliness method, is a minimization task with m 
variables. For each run of this minimization calculation the inversion of a n × n correlation matrix is necessary. 
This matrix in some cases may become singular, if in the experimental design some points are close to one 
another. Problems have been identified for some factorial designs and central composite designs. This method 
interpolates the results – in the experimental points the value of the prediction coincides with the registered 
response value (or its mean value, if the runs are repeated).  
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Appendix 1. 
Entering analytical expressions in the KEDRO program 
The program KEDRO allows entering analytical expression in several places. 
Calculation of User Defined Function  allows to calculate the response function values, using analytical expressions 
– this is useful for testing the program and training the users.  
To implement this possibility, the user must indicate the order number of the response function Y in the spinedit window 
and enter an analytical expression for an arbitrary function in edit window. The expression may contain factors X1, 
X2,..,Xm, where m is the number of factors, as well as constants and functions that are interrelated with operators that 
are listed below. 
In order to calculate values for the indicated response function, the user must press the button "Calculate". Afterwards 
the expression for the next response function may be entered. When exiting the form by pressing the button “OK”,  all 
the entered response functions are assigned the calculated values. 
In the optimization window the expressions may be entered in the criterion and the constraint columns. In these places 
in addition to the input variables X1, X2,.., Xm the expressions may also contain the approximated response function 
designations Y1, Y2, …,Y12 
 
Operators list 
 
Operand  comment   example 
 
 +  addition    x1+x2 
 -  subtraction   x1-x2 
 *  multiplication   x1*x2 
 /  division    x1/x2 
 ^  power    x1^x2 
 
Functions list 
 
abbreviation  comment   example 
 
 abs  absolute   abs(-10) 
 arccos  arccosine   arccos(1) 
 arcsin  arcsine    arcsin(1) 
 arctg  arctangent   arctg(2) 
 cos  cosine    cos(0.5) 
 cosec  cosecant   cosec(1) 
 ctg  cotangent   ctg(3.5) 
 exp  exponent   exp(2) 
 ln  logarithm to the base e  ln(2.718) 
 log10  logarithm to the base 10  log10(1000) 
 neg  negative   neg(-1) 
 pi  pi    pi() 
 random  random (Range: Integer) 
   returns random number 
   X within the range  
   0 <= X < Range. 
   If Range is not specified, 
   the result is a real-type  
   random number within  
   the range 0 <= X < 1.  random(); random(5) 
 sec  secant    sec(1) 
 sin  sine    sin(0.5) 
 sqrt  square root   sqrt(4) 
 sum  sum of args   sum(1,2) 
 tg  tangent    tg(0.4) 
 int  integer part of real variable int(1.91) result=1.0 

 

 


