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1. General information

The KEDRO software was created in the Laboratory of Problems of Machine and Mechanism Dynamics in
the Riga Technical University. The authors of the software are the engineering science doctors: professor
Janis Auzins, professor Aleksandrs JanusSevskis and associate professor Janis JanuSevskis. The program
implements the scientific ideas of the authors in the fields of computer experiment planning, metamodel
creation and global optimization.
The main characteristics of the program KEDRO v. 1.01:

1. Number of experiment input factors — up to 12

2. Number of experimental runs — up to 500

3. The number of additional optimization constraints in the form of inequalities — up to 12

The computer must have an Internet connection in order to use the optimized experimental designs from the
Internet data base.

The types of optimized designs: Latin hypercube (LH) type computer experiment plans optimized according
to the Minimal Average Error, MaxiMin, Entropy, V. Eglajs’ potential energy criteria, classic factorial,
Central composite, Box-Behnken type plans for implementing physical experiments.

The metamodel (approximated input — response connection) creation methods: first, second, third order
multivariable polynomials, locally weighted polynomial approximations, kriging.

Optimization method: modified recurrent simulated annealing of the start for optimization of one criterion,
the Pareto limit set generation for multicriterion optimization (if the specific version of the program contains
multicriterion optimization).

Operating systems supported by KEDRO: MS Windows XP, Vista, Windows 7, 8 and 10.

1.1. KEDRO licensing
KEDRO may be used only by natural and legal persons that have signed licensing agreements with the
collective of authors of the software, represented by Aleksandrs Janusevskis. Any other use of the software or
any its component will be considered to be a violation of the Copyrigh Law of the Republic of Latvia (The
Official Newspaper of the Saeima and the Cabinet of Ministers of the Republic of Latvia, 2000, vol. 11.; 2003,
vol. 8.; 2004, vol. 10; 2007, vol. 6; 2008, vol. 3; “Latvijas Véstnesis”, 2010, vol. 205), and the violator will
be sued and punished with the full severity of the law.

1.2. Installing the program.
The program KEDRO along with all its folders must be copied from the data medium to the hard drive of the
computer in a location convenient for the user. Afterwards the file KEDRO.exe must be started. When running
the program for the first time, the license number or the user password may be requested. During the first time
running KEDRO, the computer must be connected to the Internet.

1.3. Starting the program.
The file KEDRO.exe must be started. After the start, the license information is shown on screen. Pressing any
key, after 5 seconds the license information disappears from the screen and work with the program may begin.
The licensing information may also appear on the screen if the KEDRO program is not closed and the user
switches to the window of some other program. Then, upon returning to KEDRO, the license window may be
shown again.



1.4. Designations used
Designations in bold signify matrices and column vectors.

n — the total number of runs in the experiment, including repeated runs. Also known as the number of
design points. May not exceed 500.

m — number of input variables (factors), may not exceed 12.

L — number of responses registered in the experiment measurements, may not exceed 12.

Xi — i-th experiment design point in an m-dimensional space. Column vector, includes m components Xij

j=1,....m
yj — j-th response function.
yi(Xi) — value of the j-th response function in the i-th experiment design point.

x1,...,x12 factor designations used in the analytical expressions in the KEDRO windows.

yl,...,y12 response designations used in the analytical expressions in the KEDRO windows.

yi — registered value of the response in the i-th experiment design point. Is used in cases where one specific
response is selected from the twelve possible.

¥ — mean value of the response in the experiment points

y(x) —approximated response function

y(x;) —value of the approximated response function in the i-th experiment design point

y(x;) —y;  residual, difference between the predicted and measured response value in the i-th
experimental design point.

STD - standard deviation, square root from the sum of the squares of differences divided by the number of

points minus the number of degrees of freedom (see lower in the text)

1.5. Using graphs in the KEDRO program

All two-dimensional graphs may be zoomed. To zoom the fragment of interest, move the cursor with a
pressed-down left mouse button from the left upper corner to the right lower corner. To return to the initial
size, move the cursor in the opposite direction. With the right mouse button pressed, the entire graph may be
moved to the right, to the left, up or down.

All three-dimensional graphs may be rotated with the left mouse button pressed. In some graphs, pressing the
right mouse button may open the graph formatting window.



2. A simple example

Work with KEDRO usually consists of the following steps:

1. Creating the experimental design. Exporting the plan as a file for use in computer experiments.

2. Conducting physical or computer experiments.

3. Inputting the values of responses registered in the experiments.

4. Approximation of the dependences of the response — input factors. Choosing the best approximation,
evaluating adequacy, filtrating gross mistakes. Evaluating the significance of the regression function
members.

5. Output of the approximated polynomial models in files for use in other software

6. Implementing global optimization, using analytical expressions in criteria and boundary functions
that contain both input variables and the approximated response functions.

7. Evaluating the precision of the located optimum, conducting additional experimental measurements.

Next we will review these steps in a simple example.

2.1. Beginning a new project

File Experimental Design Approximation  Optimization Help

@ Project - File Name: =N AC

1_Faktora_Testsl| prj

Browse... I x Cancel I / 0K I

Fig.1. Inputting the project name

KEDRO project files are text files with the extension .prj They contain information about the project: the
experimental design, measured or calculated responses in the experiment points, as well as analytically entered
response formulas, approximation parameters (if approximation has been conducted), comments (if they have
been entered in the window Input Responses), optimization parameters (if optimization has been conducted).
The program proposes a default name, adding a number to the previously saved file name. It may be replaced
by a completely new name.



2.2. Inputting the experimental design

1 2

’ -
Q Input Experimental Desj

Size
Mumber of Buns=
Factors [Farameters]=q = X Cancel |

Chooze Type of Experimental Deszign:
? Help |
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[r-optimal
Factorial 3"#
kMean Square Diztance
Wilhiz Eglajz

Fig. 2. Selection of the experimental design type

When entering a new experimental design, the following must be selected: 1) number of experimental runs n;
2) number of factors m. 3) if the KEDRO package includes software for generating new designs (it is not
included in the standard KEDRO package), the type of the generated design may be selected (Box-Behnken
type designs for approximating physical experiment results with quadratic polynomials, D-optimal Latin
hypercube (LG) and continuous D-optimal designs (mainly used for the approximation of the results of
physical experiments), Mean Square Distance (also known as Minimal Squared Error, MSE designs) LH and
continuous designs, LH designs optimized according to the V. Eglajs potential energy criterion (used mainly
for conducting numerical experiments, less efficient than the MSE plans). The KEDRO standard package does
not include software for generating new plans, however, it includes a large number of optimized designs both
in the folder KEDRO\PIans, and in the Internet data base. It must be noted that the generation of new designs,
if it is available, requires significant use of processor time, therefore in this menu it is recommended to choose
the type Custom.

The number of factors in the standard KEDRO package may not exceed 12 and the number of runs may not
exceed 500.
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Fig. 3. The design input window

In the design input window the user may define: 1) m — the number of factors (1<=m<=12).

2) n — the number of experiment runs (2<=n<=500). When defining n, the following recommendations
should be noted.

The minimum number of experiment runs (points) n depends on the number of factors m and the anticipated
degree of the approximation polynomial.

Aproksimacija |Min punktu skaits Nmin  [m=1 [m=2 | |m=12
Linedra m+1 2 3 13
Kvadratiska (m+1)" (m+2)/2 3 9
Kubiska (m+1)* (m+2)( m+3)6 |4 10 455

In order to obtain high quality approximations, the recommended number of necessary points usually is: Nrekl
> 1.5 Nmin — for linear, Nrek2 > 1.6 Nmin — for quadratic and Nrek3 > 2.0 Nmin — for cubic approximations.
It must be noted that the cubic approximations may not be used with Box-Behnken or factorial 3*m designs.
When changing n or m, the layout of the input tables dynamically changes.

3) The mnemonic names of the factors may not contain more than 15 symbols. The data of the table fields
colored in gray may not be modified and are provided only for reference.

4) Minimum and maximum values of factors. Must be corrected after the manual input or reading of the
design.

5) Table of design factor values. May be input and corrected manually, however, usually the design is
obtained automatically using the methods described below. May be input and corrected manually. The
Copy-Paste operation in this version may be executed only for some of the cells rather than for the entire
table or its part. This applies to all KEDRO tables. (In the 1.97 Beta version full Copy-Paste is implemented
in all KEDRO tables, however it is currently at the beta-testing stage.)

6) The button ”Generate New Design” is not accessible if the software does not have an additional design
calculation program. It is not included in the standard KEDRO package.



7) Reading the design from the Internet data base. The computer must possess a working Internet connection.
This data base contains an enormous number of optimized experiment designs. If the data base does not
include a design with a specific number of points, for example, 111, a design with a slightly lower or higher
number of points (runs) should be chosen.

8) A button for reading the design from a design file. The design file is a text .txt file formatted in a special
way — its first row contains information about the plan (number of points, number of factors, number of levels,
comments). The remaining rows contain the design itself: the first column contains the number of the run, the
others contain the values of the design factors. The design files with the corresponding names can be found in
the folder KEDRO\PIans.

The names of the design files identify the type and size of the design.

The design file name begins with a number that indicates the number of experiments n, followed by x, and
then the following number that identifies the number of factors m. Int indicates that the design contains
integers. If Int is not included in the name, then the design contains real (floating-point) numbers that are
scaled in segments [-1.0,1.0] or [0,1.0]. The abbreviation BB indicates that it is a Box-Behnken design,
abbreviation Dopt - a D-optimal design, abbreviation Egl — Eglajs design, abbreviation Fact3™M — three
level factorial design. The abbreviation LH indicates a Latin hypercube design that is intended for the
approximation of determined functions. Examples of the design file name N x M (Int) [Dopt Egl BB
Fact3*M] (LH).txt:

5x2IntBB.txt is a Box-Behnken design that contains 5 runs for 2 factors whose integer values are arranged in
3 levels in the range from -1 to 1;

10x2IntDoptLH.txt is a D-optimal Latin hypercube design that contains 10 runs for 2 factors whose integer
values are arranged in 10 levels in the range from 1 to 10 so that the determinant of the corresponding
information matrices (assuming that the approximated function is quadratic) would be maximally large;
16x3EgILH.txt is an Eglajs Latin hypercube design that contains 16 runs for 3 factors whose real (floating-
point) values are arranged in 16 levels in the range from -1.0 to 1.0 so that the points would be maximally
uniformly distributed in the factor space according to the Eglajs criterion, namely, that they would give the
maximum amount of information on the approximated function.

9x2IntFact3”M.txt is a factorial design 3”m that contains 9 runs for 2 factors whose integer values are
arranged in 3 levels for each factor in the range from -1 to 1;

After reading the design the table sizes and the assigned variable values are dynamically set.

If the design type previously selected is not "Custom” (for example, "Box-Behnken", "D- optimal”,
"Factorial 3*M" or "Vilnis Eglajs"), then the program proposes to load an existing design of the specific
type. If the specific design does not exist, it may be generated anew if the software package includes deisgn
calculation programs, or the design may be found in the Web data base proposed. It must be noted that the
generation of "Vilnis Eglajs" and "D- optimal designs for large values of m and n may consume significant
amounts of processing time and the user must decide how many iterations should be assigned for improving
the design criterion and when the process should be interrupted. In the other cases ("Box-Behnken",
"Factorial 3*M" ) the design may also be loaded if the specific design does not exist, since it will be quickly
calculated before loading. When selecting "Factorial 3M" designs, m must be less than 6, since in the
opposite case the constraint for n<501 will be violated.

For files whose names include ,,int" the factor values are level numbers, in other design files the factor values
may be scaled in the segment [-1, 1] or [0,1]. The user does not have to worry about this after reading the
design since in any case the design must be scaled to the physical range for each factor (see. below paragraph
13 regarding design scaling).

9) Inputting the design from one or more text files. They must be .txt files where the numbers are separated
by space, tab or comma symbols. KEDRO does not support reading designs from MS Word or Excel files.
The data reading method from the selected text file is defined in a special Insert Data from Issue File (...) to
Factor Table dialog window. This window lets the user define the amount of data read (row number x column
number). (Amount of Data = Rows x Cols) from the selected source — text file that must contain factor values
arranged in columns.



If m factor values for n runs are read at once, then the source file must contain m columns with n rows, that is,
it must be a rectangular matrix with the size (n x m). The amount of input data must correspond to the size of
the source file.

In order to correctly (unambiguously) read the data, it is necessary to define the absolute address of the factor
table elements (Insertion Point), indicating the row and column where the first read value should be inserted.
Similarly the array element of the source file (Point from what to start Reading) must be indicated from
which the information reading will be started.

The insertion of data in cases when the source file size is greater than the amount of readable data, may be
illustrated with the following diagram.

Factor.N_1.ta_3 |
IMne- | X1 | %o | %3 | Insertion Point
imonidFactor 1 Factor 2 Factor_3
0 i |
‘ i) 0
9 0 0
1 0 / 0 lssue F"e P0|nt to Staﬂ Read|ng
2 1o 0 0 Amount of Data = Rows x Cols
3 lo 0
4 o 0 0 |
31 0 F —
g lo actor Table 5 = -
7lo for Experimental Design S B
P 0 0 u
9 Io 0 0 e g
1 o 0 0 ]
1o 0 0 e
121 o 0 0 R
13 lo 0 0 0
14 lo 0 0
15 e 0 0 W Cols
5
Issue Cols

10) To visually evaluate the actual plan loaded in the factor table, viewing its projections, the user must
press the button "View Current Design".

11) Exporting the entered plan in various CAD, CAE formats. The current version does not support all
formats, therefore some buttons are not accessible.

12) Information on the source of the previous or current experimental design (if it has been read).

13) By pressing the button ,,Rescale”, the design is obtained in the ranges of the real physical variables. The
experimental designs are stored both in integer format and in floating-point format (scaled in the range from
-1.0 to 1.0) (design space). Therefore, when the chosen design has been read, in order to transfer to the
actual physical values of the factors, the minimal and maximal values of the range of actual changes of the
factors must be entered in pos. 14 of the table (second from above) in the current window. During the
entering of these values, the table of the experimental design values becomes inaccessible, however, the
button "Rescale™ is available. To obtain the specific physical values of the design — the so-called working
space, the design must be recalculated (linearly transformed) by pressing the button "Rescale”.
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ﬁ Input Factor Values by Experimental Design (Custom Plan): 1_Faktora_Testsl.pr
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Fig. 4. Manually entered experimental design values and the factor name ,,X1”

14) After manual design input, if the values have been entered in physical units, the button ,,Find
Min&Max Values” should be pressed.

Factar_M_1_to 1 |
Mre- | #1
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Levelz |0
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Fig. 5. The design table after manual input and determining the range values Min and Max
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15) Pressing the button ,,Print”, the entered design may be printed out.
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2.3. Inputting responses

After inputting or correcting the design, the button OK or Cancel should be pressed (Cancel, if the changes
were not successful).

After entering or changing the design the approximation button in the menu Approximation is not available
since the experiment responses must be entered or corrected..

4 Kedro -1 Faktora Testslpng .
File Experimental Design [Approximationl Optimization Help

Input Responses

Approximate

Fig. 6. The menu Approximation after correcting or changing the experimental design

The experiment run responses may be entered manually (not recommended since the user is almost certain to
make mistakes, enter the data in the wrong order, enter an incorrect digit, etc.), by reading it from a text file
or by entering in the form of a formula (a very useful option for understanding the properties of varios designs
and approximation methods).

Fig. 7 shows a filled-out response entry window:

Q Input and Correction of Response:

1 > Mode of Table Editing
v 1 / X Cancel

%1

w m\ 10 11 2 b
1) [N [ 1) [245623 2 Input
2 |2 2] 18188 from File
Il | 3) |11.258
4 |4 |4 |227118 4 by Formula
5 |5 5 |-02r933 ._______3 ;‘___,_._-—-"'
£ |5 | 6] |-0E21703 -
7 |7 7) |168572 6"“"’7@
g |8 |3 |4z1223 £ '
3 |3 N}
10) |10 101 £

7..-—-—'4

Project Conments:
Ma: |1 Mo |7 / 8

mair: | 1 i | -1.6572 -

Example of simple one factor design

Fig. 7. Response entry window

1) Number of response functions L. When correcting L, the layout of the entry table changes dynamically. In
the KEDRO version 1.01 the number of responses may not exceed 12. If the number of responses exceeds 6,
then the window shows two pages with response tables — the user may switch between them to visualize them
one after another.

2) Mnemonic names of the responses. Here the name of the first response is shown - Responsel. In formulas,
the designations y1, y2,..., y12 should be used instead of the mnemonic names.
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3) A filled-out response table. It may be obtained, for example, by entering the corresponding values in each
table cell from the keyboard or copying them from the clipboard. When manually filling in or editing the table,
the user may transfer to the next cell by using the mouse or the keyboard arrow buttons.

4) By pressing the "Input” field button "from File" (this button is available only if the screen shows the input
tables for response functions, that is, if the corresponding page is activated), the values by columns may be
entered from a previously prepared data file in text format of arbitrary size. The rules for the file formatting
are the same as with reading the design from a text file.

5) By pressing the "Input” field button "by Formula"”, the response values may be entered, using analytical
expressions (formulas).

6) By pressing the "Input” field button "Creating by", the values may be input, using special programs.

7) The button "Find Min&Max" for finding the minimal and maximal values of the responses. It is intended
only for control during response input, further the program will find these values automatically even if the
button has not been pressed.

8) The field "Project Comments" is intended for the input of text comments that are saved in the project file.
9) The found minimal and maximal values of the responses after pressing the button "Find Min&Max"
(pos.7).

10) The button "Print" allows to print out the entered response values.

11) To ensure comfortable data input, the mode of input should be selected depending on the specific number
of factors and response functions. The data editing tables provide 3 modes: a) the factors and responses are
arranged in tables in several pages (each page contains up to 6 variables); b) a single table is used for the input
of response values; ¢) a single page is used for the input of factors and response values. The KEDRO version
1.01 implements only mode a.

For the sake of demonstration, let us read the responses from the text file Plana_Un_Atbilzu_teksta_Fails.txt
The file contains the following information:

Simple example of text file for input of experimental design or responses
Any comment, for example the date, time of experiment executing

1.0 24.56230.4

2.0 18.1860 0.5

3.0 11.258 0.6

4.0 2.27116 0.7

5.0-0.279330 0.8

6.0 -0.621703 0.9

7.0-1.65720 1.0

8.0 4.212231.1

9.0 9.819211.2

10 10.0 17.248 1.3

Any comment or other text

Last row of the text file

O©oOo~NOoO ok wN -

Let us read the value of the first response from this file, pressing the button Input from File:


mk:@MSITStore:C:/Aleks/Kedro/Kedro1.chm::/html/hs2005.htm
mk:@MSITStore:C:/Aleks/Kedro/Kedro1.chm::/html/hs2015.htm
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Fig. 8. Selection of the file to be read
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Fig. 9. Response reading window

To read responses from a file, the following must be entered:
1 —the row of the response table from which the input should be started. Usually it is the first row, but this is
not compulsory.

2 — the response with which the entry should be begun. Different responses may be entered from different
files.

3 —how many response rows should be entered. By default it is proposed to fill out the entire table.
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4 —how many responses should be read from the given file. By default, it is proposed to read all the responses.
Important: If the number of planned responses L is greater than 1 (for example, 5), but it is not necessary to
read all the responses, then the number of columns to be read must always be corrected — by default it will be
L and a file input error may occur.

5 — from which file row the reading should be started. The first rows of the file may contain other information.
6 — from which file column the reading should be started. If it is not the first column then its left side should
also contain numbers separated by spaces, tab signs or commas. After the last column to be read, the file may
contain text information (separated by a space) which the program does not read.

?mm(:mmh;udm 1_Faktora_TestsLpn [E=npoN x|
Tetal No. of Runs=10, Factore1 and Response Funchona= - Mode of Table E
= s B | e £
= e
_7 o
[ Jeeses Input
12) 18188 from Fia
1 13) |n.2ss
L4 |22m18 b,l'mal
5] |027s33
[6) | 0821703 |
_ﬂ_~1$572 Dt eitab s
8 a2 -4 :
98191
19 v l
Project Comatents
Example of sergie one Iactor dengn
No |1 No |7
mn |1 miny |1 6572
M . [Mmax -
No {10 Na |1

Fig. 10. Resbonse entry window after reading from the file Plana_Un_Atbilzu_teksta Fails.txt

Important! KEDRO uses only the dot as a decimal separator! If the comma is set as the decimal
separator in Windows, then using the Control Panel — Regional and Language Options window, button
,Customize this format...”, the dot should be set as the decimal separator:



Numbers | Currency | Tme | Date |
| Example
Positive: 123 456 789.00 Negative:  -123 456 789.00

To change the way your computer displays numbers, currencies, dates, and
time, select an entry from the format list.

Current format:

[Latvian (Latvia) ~

Decimal symbol:

No. of digits after decimal:

Examples of how data is displayed using this format:

Digit grouping symbol:

Number: 123 456 789.00

Digit grouping:

Currency: Ls 123 456 789,00

Negative sign symbol:

Time: 12:58:38

Negative number format:

Short date:  2014.04.29.

Display leading zeros:

Long date:  otrdiena, 2014. gada 29. aprili

List separator:

Measurement system:

Standard digits:

For additional formats, keyboards, and tools, go to the Microsoft website.

Lok | cancel || 2oy

Use native digits:

Click Reset to restore the system default settings for

numbers, currency, time, and date.
[_ok || cancel Apply

Fig. 11. Setting the dot as the decimal separator

2.4 Conducting approximations
After entering the responses in the main menu, the menu Approximation-Approximate becomes available:

ol C Lo Kigng Calculate Point | View Coefficients |
Edit Project File| | Second Options | Approzimate | View Graphs I

Functions Yi:
Sigma Cross
Sigma Cross%
R2 adjusted
F-Crit 99%
Sigma
Sigma’
MeanE xpValue
StDev of Exp
Exp. Range
MaxE rror

Bad Point No.
Max Rel Emor
BadRelPointNo.
Max Cook Dist.
Suspicious poi
No.oféctualE xp
Filtered STD

Fig. 12. Part of the approximation window
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Figure 12 shows the results of linear polynomial approximation for the entered data. For approximation, global
polynomial (linear, quadratic, cubic), locally weighted polynomial or kriging methods may be chosen. The
essence of the methods is explained below.

Attention! Sometimes after making changes in the input data, when opening the approximation window the
result of the previous approximation is shown with the Approximate button inaccessible (see figure). In that
case a different degree of approximation should be chosen, the approximation should not be conducted, the
necessary approximation should be chosen again and then the button Approximate should be pressed. This is
not an error, it is intended for cases when the approximation requires a long time.

3. Controlling adequacy of approximations
The left side of the table (see Fig.12) shows data that characterize the adequacy of the approximation.
3.1. Cross-validation

One of the main indicators of the adequacy and quality of approximation is the cross-validation error Sigma
Cross. KEDRO uses leave-one-out-cross-validation or the so-called n-fold cross-validation error:

_ Zinzl(yi - 9i(_i))2
cross n (1)

where ¥, ;, is the value of the approximated function for input factor value x;, if the approximation does not

use the i-th experiment point. Successively discarding one of the experimental points, the program calculates
the coefficients of the approximated model and the mean square difference between the approximation
without the discarded point and the response measurements in the discarded point. The cross-validation error
is an evaluation of the so-called model prediction error. The prediction error is essentially the most important
indicator of model quality, but theoretically it should be obtained by conducting a large number of additional
runs and calculating the difference between the approximated model and the response values in points that
have not been used for creating the model. Cross-validation is an approximate evaluation of the prediction
error and it is obtained without conducting additional runs. By itself this indicator is not very informative since
the size of the cross-validation error must be evaluated against the numerical value of the response. The
relative error could be calculated in relation to the mean value of the response or the response range Ymax-Ymin,
however such relative error measurements possess certain drawbacks. The mean value could be close to zero
— then the relative error will be an unreasonably large number. The response range may turn out to be very
large although the majority of the experimental points give an almost constant response value — then the error
evaluation will be unreasonably reduced. This situation is shown in Figure 13. In relation to the mean value
of the response (about 1.0) the error of approximation is insignificant. In relation to the response change range
the error is very large.
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1.01 O
1.008 i

1.006 ¥ . . ........ ..

1.004
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0.998 m =
0.996 =
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0.992 m
0.99 | [ ..
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Fig. 13. Linear approximation for an almost constant function

A more objective evaluation of the relative cross-validation error is the division of the absolute error with the
mean quadratic deviation of the response from the mean value STD (designated in the table as STDev of Exp)

n-1
where y is the mean value of the response in the experimental points
n
- i=1 yl 3
y=="= 3)

Relative cross-validation error (Sigma Cross%) as a percentage of STD:

Zinzl(yi — Vi )2

n
cross rel — STD X1OO% (4)

O

This prediction error evaluation has the following good property: if the response is approximated with a
constant, then the relative cross-validation error is 100%. Therefore, if the cross-validation error approaches
100 percent, then the approximation is useless. If the error exceeds 100%, then the approximation is absolutely
wrong and the result is worse than the assumption that the response does not depend on the values of the input
factors!

But, knowing this value and the values shown in the table - STD, y (designation MeanExpValue) and range
(designation Exp. Range), the relative error may also be calculated in relation to the mean value and the range
of the response change.
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The evaluation of the cross-validation error is informative for the approximation quality of both physical and
numerical (computer experiment) results. As can be seen, the cross-validation error in the example is greater
than 100%, signifying that the linear approximation of these results is not acceptable.
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3.2.  Other measurements of the approximation quality

The other numbers shown in the table are classic evaluations of natural experiment result analysis that are
based on the residuals analysis (difference between the measured and approximated response values) and are
used mainly for the polynomial approximations of physical experiments. For computer experiments and non-
parametric approximations (kriging and locally weighted polynomials) they are informative but cannot be
interpreted with absolute precision.

Mean Squared Error

M5 a2
MSE — 6-2 — 1_1(yl yl) (5)

n-—p
where p is the number of parameters in the regression function.
Correspondingly the square root from the mean square error in regression analysis is known as the Sigma
evaluation:

n (5. v.)2
RMSE = 6 = i=1Vi—Vi)
= 0 = (6)
n-—p
In the table it is designated as Sigma. Just as the cross-validation error, the relative Sigma value is calculated
in relation to the standard deviation from the mean response value:

~ o

This value is designated in the table as Sigma%

Here it should be noted that large values of residuals always indicate a bad approximation or the presence of
gross errors in the input data. However, small residual Sigma values and Sigma% are no guarantee for a precise
approximation.

3.3. R2?-evaluation

In regression analysis, the so-called R? evaluation and its more objective variant— adjusted R? are popular:

2 _SSR _ . _ _G*(n-p) @
SST STD2(n-1)
and
n—1 SSE/(n—p)
Raaj =1 - n—p 1-RH=1- SST/(n-1) ®)

Here SSE is the Sum of squares due to error with n-p degrees of freedom:

SSE = ¥i1(Pi — y1)? (10)



SSE ~ N (P —v.)2
MSE — 20 0_2 — 1_1(yl yl) 1)
n-=p n-=p

SSR is the Sum of squares due to regression:
—_ n ( 5 7 ) 2
SSR = 2i=1(¥i — Vi (12
with p-1 degrees of freedom
SST is the Total sum of squares:

SST

i —y)° 13)

with n-1 degrees of freedom

SST
n—1

STD =

(14)

It is obvious that

SST = SSR + SSE (15)

Approximation is considered to be good if the adjusted R? criterion is close to 1. In regression analysis this is
often interpreted so: the value of the adjusted R? criterion 0.99 explains 99% from the change of the response
during the experiment runs. This is not always completely true, however, small R? and adjusted R? values
always signify a bad approximation.

3.4. F-criterion

The F-criterion for experiments without repeated runs (designation F-Crit 99%). The classical adequacy
criterion used in regression analysis is
__ SSR/(p—-1)

~ SSE/(n-p)

(16)

In order to believe with a given confidence probability (usually 0.95 or 0.99) that the created approximation
model is better than the assumption that the response of the physical experiments does not depend on the input
factors, the value of the F-criterion must be greater than the value of the inverse cumulative F-distribution
with p-1 degrees of freedom for the numerator and n-p degrees of freedom for the denominator. KEDRO
calculates the critical value for the confidence probability 0.99

In inverse F-distribution tables, Excel, MathCad programs as well as using Internet online calculators (for
example, http://www.danielsoper.com/statcalc3/calc.aspx?id=4) the critical values for different confidence
probabilities may be obtained. Usually in these tables the value of confidence level is used that is equal to 1
minus the confidence probability, therefore KEDRO uses confidence level 0.01.

For computer experiments and non-parametric approximations the F-criterion is not an absolutely safe
evaluation of adequacy but it has informative character and attention should be paid to it. For example, figure
12 shows a case where the linear approximation of results does not give an adequate model: the value of
relative cross-validation is greater than 100% and the value of the F-criterion is greater than the critical value
for the confidence level 0.01



http://www.danielsoper.com/statcalc3/calc.aspx?id=4
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However, this can also be clearly seen in the graph (button View Graphs):

Cross-section of Response Surface
(Linear)
with Experimental Points

24

22

20
18 O

16

14

12

Y1l

10 L]

0 u ]
2 : . B

1 2 3 4 5 6 7 8 9 10
X1 (m)

Fig. 14. A graph of an inadequate linear approximation

3.5. Determining possible outliers

The table data Max Error, Max Rel Error and Cook’s distance and the numbers of the corresponding
experimental points may allow to detect outliers in the input data. Max Error and Max Rel Error signify the
maximum difference between the experimentally determined and approximated function values. The
designations Bad point and Suspicious point do not guarantee that the corresponding run has a gross error.
They signify candidates for additional checks. Cook’s distance is the maximum difference between an
approximation where the experimental point is used and an approximation where it is not used. Such a point
is also a candidate for a check. One of the safest types of checks is the elimination of the suspicious point. If
thereby the relative cross-validation error is significantly reduced, it signifies that either this point is in error
(mistakenly entered, a mistake in measuring the response, etc.) or the program is incapable of creating an
adequate model in the vicinity of this point.

Figure 15 shows the linear approximation evaluation table for the previously described example with
comments
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Sigma Cross 11.008744 | Cross-validation error

Sigma Cross% 119.930989% Relative cross-validation error. Exceeds 100%, therefore the approximation is useless.
R2 adjusted 0.007614 Adjusted R? criterion. Very small, therefore the approximation is bad

F-Crit 99% 1.069¢11.2537?2 | 99% confidence probability F-criterion. Less than critical value

Sigma 9144219 Adjusted evaluation of the mean approximation error.

Sigma 99618568 Mean relative approximation error. Very large.

MeanE xpV alue 8.499867 Mean response value.

StDev of Exp 9179232 Standard deviation of the response from the mean value

Exp. Range 26.219500 Range of response change ymax-V'min

MaxE rror 13.432293 Maximal difference between the approximation and the measured response
Bad Point No. 10 Number of Point with maximal Absolute value of residual

Max Rel Error 200.00% Maximal relative error (in relation to the experimental value)

BadRelPointNo. 5 Point with maximal relative error

Max Cook Dist. 20521559 Maximal Cook’s distance

Suspicious point 10 Number of point with maximal Cook distance. First candidate for checking
No.ofé4ctualExp 10 Number of used points = n- number of discarded points.

Fitered STD The mean error of approximation for the discarded points (if such exist)

Fig. 15. Evaluation of the linear approximation quality

Let us implement the quadratic and cubic approximation of the same data.

Furctions i 71 Functions i 1 Functions i il
Sigma Crogz Sigma Cross Sigma Crogz
Sigma Crogsi 119.930939% Sigrna Cross® 24 ME37RE Sigma Crozzi 3.074542%
R2 adjusted 000761 4 B2 adjusted 0.363754 Rz adiusted 0972397
F-Crit 997 1.069<17.259777 F-Crit 333 1453233 647 F-Crit 995 106 683> 9.780
Sigma 9144219 Sigma 1.53E131 Sigma 1.525058
Sigmak 959618563 Sigmaz 17358501 Sigma’ 16614227
b eanE «p alue 8 499867 Meank xpi alue 8. 433567 hdeanE spv alue £, 499567
StDev of Exp 9179232 StDev af Exp 3173232 StDev of Exp 9179232
Exp. Range 26.2193500 Exp. Range 26.219500 Exp. Range 26.219500
b anE rror 134232293 bk rrar 2 3VEVR3 b a=E rror -1. 786378
Bad Point Mo, 10 Bad Paint Mo, 3 Bad Point No. 4
tax Rel Emor 200,005 taw Rel Errar 200,007 Max Rel Emor 200,003
B adRelPointh o. 5 BadRelPaintMo. ] E adR elP cirth o. 5
M ax Cook Dist. 20521559 Max Cook Dist, -5. 100265 tax Cook Dist. -5.983240
Suspicious point 10 Suspicious paint 1 Suzpicious point 1
Mo.ofdctualE xp 10 No.obdctualExp 10 Mo ofbctualE xp 10
Filtered STD Filtered STD Filtered STD

Fig. 16. Linear, quadratic and cubic approximation for the example results

As can be seen in Figure 16, quadratic and cubic approximations are of a significantly higher quality than
linear approximation. Cubic approximation has a slightly better R? and sigma criteria values, however, the
cross-validation error clearly shows that quadratic approximation is the best.

Figure 17 shows the graph of the quadratic approximation
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Cross-section of Response Surface
(Square )
with Experimental Points
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Fig. 17. Graph of the quadratic approximation

3.6. Graphic checks of residuals.

The button Residuals in the approximation window allows to visually analyze residuals (the difference
between the measured and the approximated responses). One of the most important residual analysis windows
is Histogram, Fig. 18.

AP | Residuais io Experimental Points o =) S
o Lo T
Choose nclion | ="y & Residusl  OnBesidusl & Histogrom VewGih| P lHeb | | o OK
]
Functien Y1. Y1 Frsiduals Hatogram
6
ss
| 5
45
4
35
3
25
2
15
1
05
0
3 2 -t 0 1 2 3 M s
Pont Colors ity
Ep) Approx Used 7 Elensted ¥ Draw Marks for Every 1 = Coumn
Evo < Approx Uted 7 7 HisogaminenaiNo. B S|  Dekas2 37676U2121212

Fig. 18. The histogram window for residuals
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It is particularly significant for the analysis of results of physical (natural) experiments. In that case the
residuals should be approximately distributed according to the normal Gauss probability density distribution,
the histogram columns should form a bell-shape, see Fig. 19.

150 =

Number of runs

<15 -1 -05 0 05 1 15 2
Residual value

Fig. 19. A histogram that corresponds to the normal distribution.
The histogram will never correspond to the normal distribution precisely. The correspondence should be

approximate. In the case of a small number of experimental points, the histogram should also have a small
number of columns selected, for example, 3 columns for 10 runs, as in Fig. 18.

4. An example of two factors and 50 points. Computer experiments. MSE LH
design

4.1. Inputting experimental designs from the Internet database

Pressing the button (pos.7) Load Design from Web Database in the window Input Factor Values by
Experimental Design (see Fig. 3) we obtain:

-
& FWebDb - ESER
Mumber of Bunz= S0 - Mumber of Factorz= I2 3'
Reload DB Data |

Funz | Factaors | Type | Criterian | Criterion " alue | Dezign Id |
RO 2 Latin Hupercube O b axkdin 0.14716R E10

RO 2 Latin Hupercube D Entrapy 213.075798 8EG

|Latir'| Hypercube [11 b ean Square Ern:n‘ 0121818 |'IEII:I.'-"

Load Deszign Yiew Deszign Info ¢ k.

Fig. 20. Window for the database of experimental designs

Let us choose Latin Hypercube Mean Square Error and Load Design
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After reading the design variables must be assigned names and the design must be scaled according to the
minimum and maximum values of the physical variables. For example, let us scale both variables to the

interval [-1, 1]
Total Ma. of Runs= |5|:| 5, Factors= |2 3, Hecalculatel

Factor_M_1_to 2 |
bre- | #1 2
ronic e
Levels |0 1]
kdin -1 -1
Max |1 1|

Fig. 21. The design table prior to scaling

Pressing the button Rescale we obtain the design in the range of the real physical variables.

Using the button View Current Design we can view the design and using the button Copy to Clipboard and
2D projection we can copy the image of the design as a bitmap or metafile. The copied image can be copied
from the clipboard to another program, for example, Microsoft Word. It is recommended to use the metafile
format for copying since it is provides a higher quality format of vector graphics.
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Fig. 22. The design read from the database after scaling

Using the button Save Experiments for ANSYS the design can be saved in a text file that can be read from
the FEM programs ANSYS

4.2. Inputting responses using analytical functions

In this example we will enter an analytical function instead of real measurements. KEDRO allows entering
various analytical expressions, using the designations x1, x2,..., x12 for variables. In the optimization
window, the responses y1, y2, ..., y12 can also be used as variables. It is compulsory to write x1 rather than
the mnemonic name of the variable.

A list of KEDRO functions is given in Appendix 1. In formulas lower and upper case letters are considered to
be equal.

KEDRO contains several functions intended specifically for testing. One of them is the ,,Standard test
function”:

1 1
1:test (X) = m o m (17)

143 (x,—0.05f 1+ (x,+0.05)

j=1 j=1

This multi-argument function is difficult to approximate with polynomials, it has exactly one minimum and
one maximum in the region [-1, 1]™. The approximation prediction precision of an analytically entered
function may be tested in randomly generated points - their number can be set in the window Options for
Approximations (Fig. 31.).

Relative error in the test points TestSigma is calculated according to the formula:

MeanSquareError
Variance

1y - 2
\/N z (ftest (Wi ) - ftest (Wi ))
100% = = 100%\/

(ftest (Wi ) - ftest

(18)
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where wi — test points (i = 1,...,n), f., (W.) - the approximated test function value in the test point, f.q - the

mean test function value in the test points. This evaluation can be used for all analytically entered responses
and may be compared to the predicted prediction evaluation Sigma Cross% , expressions (2, 3, 4).

p :C*ulnﬁonostetDeﬁmdFuncﬁon —_—

v — e 45) b |
> e

[—I o 1A D061 2640 0552Y 2111 {00641 1 2+( 0. 0542172
1 -
K

| Standard Test Futﬁdl Nomal Noie= (0 X Cokuate j l
X Cancel Z th]

Fig. 23. Entering an analytical function in the response input window

Noise with normal distribution and mean value zero may be added to the entered responses, where standard
deviation is set as a percentage to the standard deviation of the calculated data from the mean value. Let us
input noise level zero. Figure 24 shows the appearance of the Standard test function

/

0.05

-0.05 ¢

Fig. 24. Standard two argument test function

The comments window allows entering any text.
Let us test the global polynomial approximations:
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Runz f-f-PEfDHt Drder N Approx Order Runz Approx Order
Tu:ut.fnl=5[l. | ~ TEidDm £ Kriginy Total=50 g ?Eitdum " Krigin Tgtal=50 ; ?Eitdﬂm = Krigir
Edit Project File| | Secand Edit Project File| | & Second Edit Project File | | Second
i Firstlinear ™ Firstlinear " Firstdinear

Functions i Functionz i Functions i

Sigma Cross Sigma Crogs W Sigma Crozs

Sigma Cross 43.572783% Sigrna Cross 47.750237% Sigma Crogs 18.200239%
R2 adjusted 0.817604 R2 adjusted 0805823 R2 adjusted 0.975685
F-Ciit 995 110.823,5.087 = 41 659> 3465 F-Cit 9522 219 46552858
Sigma 0.023691 Sigma 0.024444 Sigma 0.002650
Sigra® 42, 77872 Sigma% 44 (5500 Sigma’ 155593404
MeanExptalue -0.000223 bl eanE xpi alus .0.000223 teanE =pi alue -0.000223
StDev of Exp 0.055472 StDev of Exp 0.055472 StDev of Exp 0.055472
Exp. Range 0.180535 Evp. Range 0180535 Exp. Range 0.180635

b aE rrar -0.051210 b aE o 0047448 M awE rrar 0.019737
Bad Point Mo. 47 Ead Paint Mo 33 Bad Paint Mo 37

b ax Fel Error 200.00% bax Bel Error 200.00% b ax Fel Error 200.00%
BadRelPaintho. 13 EadRelPairtHo. 13 BadRelPaintha. 13

b ax Cook Dist. 0057515 Max Cook Dist 0067351 M Cook Dist, 0.034743
Suspicious poink 47 Suspicious point 47 Suspicious point 47
No.obtetualE »p 50 Mo.oftctualE xp A0 Mo.oftctuslE <p a0

Fitered STD Filtered STD Filkered STD

Fig. 25. First, second and third order polynomial approximation tables

The best cross-validation error is given by the third order approximation. Let us verify this graphically.

Cross-section Plane of Response Surface
(By User Formula)
with Experimental Points

Cross-section Plane of Response Surface
(Cubic)
(Custom Cubic)
with Experimental Points

i

J TTHIN
A1)

X p’//
.’///Z

7

Fig. 26. The approximated function and the precise function

As can be seen, in the corner points the functions are significantly different — this is characteristic for higher
order polynomial approximations. The analysis of residuals does not show a significant difference from
normal distribution and does not indicate the existence of a systematic error. The actual approximation error,
calculated in 10 000 test points, is approximately 0.16%, which is a rather good indicator. However, this error
may be calculated only for a known response function. The adjusted R? criterion shows that the approximation
explains about 97% of the change of the response. The F-criterion with at least 99% percent probability
indicated that the approximation is adequate (that is, the response is dependent on the inputs).
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4.3. Evaluation of the significance of regression members

Pressing the button View Coefficients in the window Approximation of Response Surface it is possible to
verify the polynomial approximation coefficients, evaluate the significance of the regression function
members and to save in text files the coefficient values and the polynomial expressions for use in other
programs.

In the window Approximation Coefficients — Normal, the table shows the polynomial coefficients g, if non-
normalized physical values are used as variables.

Y(x) = Xiz1 Bigi(x) (19)

Wr‘ Approximation Coefficients: 2_faktoru_50_Punktu_Tests.prj
—View
(¢ Nomal " Nommalized
Functions Y[1.. 1]:
1] Free term 100058826
2] X1: X1 0.128685
3] K2 X2 0.123848
4] X1x1 0.00111244
B R1X2 0.00179867
B] X2X2 0.00148215
7]l X1X1X1 -0.0779118
8] X1X1X2 -0.0607328
9] X1X2X2 -0.0627106
10) X2K2x2 | 00707222

Fig. 27. Two factor cubic approximation coefficients S

These coefficients cannot be compared to each other by value, since the norm for each regression function
member gi(x) may be significantly different:

lgill = \/ﬁfngi(xwx (20)

where V(D) signifies the volume of the experimental region D.
Inputting the normalized regression function members:

gi () = T (21)
we obtain
¥ =Ziz1 B gi () (22)

The normalized coefficients ;" = ||g;|| - §; may be compared to each other. A larger normalized coefficient
indicates a larger contribution of the corresponding member to the regression function. This comparison is
not absolutely precise since the regression function members are not orthogonal, that is, the equality

Jp9:(x) - g;(xX)dx = 0,if i # | (23)



does not hold. Therefore the regression members are aliased and they may partially compensate one another.
This means that by discarding one of the regressions function members the values of the other, non-discarded
members will be obtained using the least squares method. However, despite this the information on the
significance of members obtained by normalization may be used to reasonably evaluate the significance of
the members. In the case of linear approximation this evaluation will be as good as the evaluation of the

traditional regression analysis.
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The values of normalized members are shown in the table:

The significance of the corresponding members may also be evaluated using the so-called Pareto graphs:

Normalized — Significance

i
= Mormal

Functions Y1.. 1]

1] Free term is ignored

2] =11 a1.4864
3] =22 30,3543
4] =1=1 021101
Bl m1x2 0254772
B = 2w2 0281721
Flelxnlxn 12,4933
o I I -6.66423
Y m1x2n2 -6.88543
0] =2x2H2 11,3677

Fig. 28. Values of normalized coefficients

@ significance of Normalized Coeffcients

_— A

Relstive Influence for Y

1) Free term is not shown

2) XXt

3) X2x2

4) X1X1

5y X1Xx2

€) X2X2

7)) X1X1X1t

8 XIX1X2

9) X1XxX2X2-

10) X2X2X2

Dont thow costicents with level less than l-!:

Cick Funchor
v

i

Percantage for Y1

3 X2 X2

4) X1X1
6) X2X2

7) X1X1X1

Z Help
Copy 10 Cipboard

Pateto Fiot l

Petcentage Plot

2) X1 X1

1) Wihout free term

10) X2X2X2
) X1X2X2

Fig. 29. Evaluation of the significance of polynomial regression coefficients
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In Pareto graphs the significance of coefficients is normalized in such a way that the sum of the significances
is 100%. As can be seen, in the example the linear and the cubic members are the most significant.

The option Normalized allows to mutually compare the contribution of each member to the mathematic model.
For this purpose, the mean quadratic value of each regression function member is calculated and the members

are normalized so that

S5 —vL

Y = 2i-1Bigi(x) (24)
Pressing the button Save Expressions the approximation polynomial expressions may be saved in a text file.
An important note:
The Approximation coefficient and Significance windows apply only to global parametric approximations,

the information given in them cannot be applied to kriging and it can only partially be applied to locally
weighted approximations!
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Locally weighted polynomial approximations

The theory on various approximations is given below, p. 5.

Let us implement a locally weighted 3™ order polynomial approximation

§ Approximation of Response Surface: 2_faktoru_30_Punktu_Te:

Fiuns Approx Urder———— ¥ Local &pprox
Total=50 ¢ Custom  ( Kriging
& Third
Edit Project Filel " Second
£ Firstlinear

Funchions "' | |
Sigma Crosz

Sigma Crogs B.130955%

A2 adjusted 0993931

F-Crit 99% B92362 700: 2 888
Sigma 0000168

Sigmas 0202167

b eanE spv alue 0000223

StDev of Exp 0055472

Exp. Range 0.180635

b aE rror -0.000454

Bad Foint Mo, 19

b ax Rel Erar 200.00%
BadRelPointMo. 13

b ax Cook Dist. 0012283
Suspicious point 4

Mo, afActualk sp alll

Filtered STD

Fig. 30. Locally weighted cubic approximation, default bandwidth parameters.

Bandwadth [nearest] {50 Kemel X Cancell [I JOK
@ Gaussian o=|5
c b
s C anbetoll’estPoﬁs-llm
&
i Customn Order pa s
- 0 not use terms less than Limit:
3| e =
Function No | Linit %
x2[3 3 C i 0.00
o
C
Numbet of terms:
10

Fig. 31. The locally weighted approximation parameter window with default values

Number of Test Points applies only to analytically entered functions for which the approximation error may
be precisely determined.
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For locally weighted approximations it is possible to change the approximation parameters in the window
Options for Approximations. Unchecking Automatic, it is possible to change the bandwidth and to choose
other weight kernels. The result must be checked by comparing the cross-validation errors of approximations.
It is recommended to use the Gauss kernel, the bandwidth equal to the number of design points and to vary
the coefficient Alpha. In practice, it means to regulate the smoothness of approximation. The zero value of the
Alpha coefficient signifies global polynomial approximation — all design points will have the same weight
coefficient. By increasing the Alpha value, the values of the approximation function in the design points
approach the registered response values. Unfortunately this does not mean that the approximation becomes
more precise. It becomes less smooth and may start to adapt to noise contained in the response function. The
only possibility to evaluate the precision of the approximation prediction is the cross-validation criterion. It
must be noted that in the case of local approximations the cross-validation criterion value is pessimistic, that
is, it is usually worse than the true evaluation.

By changing the value of the coefficient Alpha in the window Options for Approximation to 27 (Fig.32a),
the cross-validation error is improved to the value 5.3%, but the actual error is approximately 0.021%, see
Fig. 32.

Note. In KEDRO v. 1.01 the parameters of locally weighted approximations are the same for all

responses
Funchions ' | |
Sigma Crosz
Sigma Crogss B.303754%
R2 adjusted 0939629
F-Crit 99% 14667 93052888
Sigma 0001069
Sigmas 1.926312
teank »p'alue 0000223
StDev of Exp 0055472
Exp. Range 0.180635
b &xE rror -0.003202
Bad Point Mo, 33
kaw Rel Emar 200.00%
BadRelPointMo. 13
bdaw Cook Dist. -0.009329
Suzpicious point 4
Mo, ofctualE sp al
Filtered STD

Fig. 32. Table showing the adequacy of the approximation (optimized locally-weighted approximation

parameters)
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Fig.32a. Locally-weighted approximation parameters set in the window Options for Approximation
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Fig. 33. Locally-weighted cubic approximation and the precise response function (to the right)

4.5.  Approximation with Kriging

For kriging approximation, for each response m+1 parameters must be defined (the so-called hyperparameter
values). KEDRO also provides default values, however in practice they must always be corrected in the

window Options.
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LH Sampling

Optimization

i »

Fig. 34. Kriging Option window

In practice it is not advised to change the first parameter (Exponent), leaving it as 2. The other parameters may
be changed manually, controlling the changes of the cross-validation error.

An important remark: kriging approximations require significantly more processor time which rapidly
rises depending on the number n of design runs!

It is possible to carry out automatic hyperparameter optimization by pressing the button LH Sampling

In the window LH sampling the number of steps for optimization searching must be entered. This may require
large amounts of processor time therefore it should first be checked by entering the value 20. To find optimal
hyperparameter values, several thousand steps are required — this may take several hours of computing time
if the number of design points exceeds 200.

Afterwards we press the button Run LH sample for all functions

; LH sampling for optimal Kriging p... &Iﬂlﬂ

Functions '
Range for x1
Range far x2 1
Criterion

Mumber of points I1 0oo

Run LH sample for all functions

< | m | ’

Fig. 35. Kriging options window

After the optimization of the kriging hyperparameters the adequacy of the approximation significantly
improves, see Fig.36.
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Fig. 36. The adequacy table for kriging approximation after parameter optimization

In one-dimensional graphs it is possible to view the cross-sections of the approximated function and the precise
function in the same graph with added experimental points, see Fig. 37.
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Fig. 37. Cross-section graphs for the approximated function and the precise function (top left - global cubic,
top right — locally-weighted cubic, lower left — global linear, lower right - kriging)

As can be seen, in this example with a determined response, kriging is more precise than the locally-weighted
polynomial approximation. The relative error of approximations for 10 000 test points (as a percentage of the
standard deviation of the function values from the mean value) is 15.9% for the global cubic, 2.1% for the
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locally weighted cubic, 0.46% for kriging and 42% for the global linear approximation.

Important: Experimental points in this graph should be considered to be scatterplots, since the
approximation graphs are cross-sections for two argument response functions for the value x2 = 0.0,
each experimental point has its own value of the component xz that is not visible in the graph. This
applies to all graphs where the number of the graph variables is lower than the total number of the

experiment input factors.

For the approximation of numerical experiments, kriging is frequently the best method. For example, the same

response function, using only an 11-point MSE LH design:

1
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Fig. 38. 11 point 2 factor MSE-optimal LH design

and kriging hyperparameters optimized after cross-validation, an approximation is obtained with the relative
error 12%, see Fig.39. If the mean relative error would be calculated relative to the range of the response
change, then it would be only 4%

Fig. 39. Kriging approximation for an 11 point experimental design (to the left) and the precise function (to
the right)
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Fig. 40. The cross-section graph, the precise function is in blue, the kriging approximation is in red, 11 point
2 factor experiment

If significant noise is added even to a 50 point two factor Standard test function with 30% standard deviation,
then see Fig.41.
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Fig. 41. The cross-section graphs for the approximated and the precise function with very noisy
measurements (Top left — global cubic, top right — locally weighted cubic, lower left — global linear, lower
right — kriging)

The relative error for global cubic approximation is 22%, the actual error for local cubic approximation is
21%, for global linear — 42%, for kriging — 21.5%. As can be seen, in the case of noisy responses, kriging
does not give better results than locally weighted approximations
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5. Optimization

Optimization is possible after the approximation of results. KEDRO may also be used to solve optimization
tasks where approximation is not used (selecting Optimization - Direct without Yii), see Fig. 42.

(# EDAOpt - 2 faktoru 50 Punktu Testsp T
File Experimental Design Approximation [Optimization] Help
Direct without Yi

by using External Function

by using Response Functions Yi

Fig. 42. Starting optimization
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Fig. 43. The optimization window

Information to be entered:
1. The target function. The expression may contain input variables x1, x2, x12, approximated responses
yl,.., yl12.
The functions described in Appendix 1 may be used. Multiplication must be signified by the asterisk
symbol *. The dot must be used as the decimal separator in numbers. KEDRO only looks for the
target function minimum. To find the maximum, the sign of the target function must be reversed.

2. Number of iterations. It determines the precision with which the global minimum will be found. If
locally weighted polynomials and kriging are not used in the approximation, then the number of
iterations may safely exceed 100 000.

If locally weighted cubic polynomials are used, the number of iterations should be increased gradually,
beginning from few thousands. Kriging requires particular caution, 100 000 kriging iterations may
require several hours of processor time. The minimization runs must be repeated, gradually increasing
the number of iterations and comparing the obtained results.

The best result from repeated runs

The result of the last run

The value of the target function obtained in the current optimization process — changes during
optimization.

oA~ w
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6. Names of input variables (do not use names in expressions!) and the range of change. Type — zero, if
the variable may have continuous values from the given range. If the variable is discrete, then Type is
the discretization step, for example, Type = 1, if the variable is an integer.

7. The acceptable range of responses yi. If Type=0, then the constraint is ignored, if Type = 1, then only
the minimal value is taken into account, if Type =2, then only the upper constraint is active, if Type>2,
then both the lower and the upper boundary is active.

8. Constraint expressions fl1, f2,..., f6. Notated in the same way as the target function. Can be entered
after pressing the button Add Constraint.

9. Acceptable minimal and maximal values of the constraint functions. Type has the same meaning as in
paragraph 7.

In the example, it can be seen that the constraint x1-x2 > 0 is active. Let us compare the located minimum
with the precise minimum of the “Standard test function”:

Eriteriu:-n:|1 A1H0. 054117 24[0.08-42)"2)-1 A1 +[-0.05-411"2+[-0.05-42] "2 =

Indices Mo kir Type |Max Criterion= |-0.091513119 [-0.091513119
1751: %1 1 R 1]x1= 0.41028794
2)%2: K2 1 o1 2) 2= 0.41028851
371: 0 o0 3¥1= 0.089367044
4]F1 0 0 4]F1= 5 B641473E-007

Fig. 44. Minimization of the analytic function

For the approximated function the minimal value -0.0895 was found in the point (-0.432, -0.432), where the
precise function had the value -0.0913. For the precise function the minimum -0.0915 was in the point (-0.410,
-0.410), meaning that the optimal criterion value was found with approximately 0.2% error.

The meaning of other elements in the optimization window
Using the button Criterion Sections the location of the optimum point and the constraint regions may be
viewed visually, see Fig. 45.
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Fig. 45. Visualization of the criterion cross-sections
Pressing the colored rectangles 1, it is possible to turn on and off the graphs of the target function and
constraints. The red point signifies the located minimum. The values of the invisible input parameters are the
optimal values therefore the graph is called the criterion surface.

The buttons Save File for plotting allow the user to save the graph in a file as a table that may be read from
visualization programs, for example, Systat SigmaPlot, MathCad or Excel.

5.1. Multi-criterion optimization
KEDRO v. 1.01 also allows multi-criterion optimization (multiobjective optimization). The Pareto boundary
surface is found and its analysis allows the user to select the preferred point from the set of many optimal
solutions.

For example, let us review the classic one variable two criteria Schaffer’s problem [5]:

min f; (x) = x?
min f5,(x) = (x — 2)? (25)

with the constraint

—10 < x «K 10 (26)

The precise solution of the optimization task is shown in the form of a Pareto boundary set in Fig. 46.
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Fig. 46. Solution of the Schaffer’s problem

After entering two criteria in the KEDRO multi-criterion optimization window and limiting the number of
points to be found by 100, we press the button Find Pareto Points, see Fig. 47.
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Fig. 47. Finding two criteria Pareto boundary set points

Pressing the button Plot Pareto Points we obtain the image:
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Fig. 48. Solution of the Schaffer’s problem with KEDRO

By pressing the mouse button on any of the Pareto boundary set points the user can obtain full information
about its: input factor, criteria and constraint function values. Of course, in criteria expressions the
designations of the approximated functions y1,.., y12 can also be used.



46

6. Parametric and non-parametric approximations.

Currently in regression analysis two different approaches are used: parametric approximation and non-
parametric approximation. In parametric approximation, the functional relation between the input and
response variables is known (at least the user has for some reason chosen them), for example, in the form of
some analytical function that contains parameters that must be adapted to the experiment data. For example,
approximation of results with a linear function is parametric regression. A significant difference of non-
parametric regression consists in the fact that there is no a priori knowledge of the form of the actual function
that should be found. In this case the responses are also modeled with functions that contain parameters, but
the number of these parameters is very large and they do not have an easily interpretable and explainable
meaning. The term “non-parametric” is not particularly successful but it has been accepted historically. The
essence of the matter is that in the case of non-parametric approximation the regression function does not exist
as an analytic expression that may be written in open form with unknown parameters. Sometimes parametric
approximation is called “global approximation” and non-parametric approximation “local approximation”.
In non-parametric approximation assumptions about the form of the regression function are not made, it is
only assumed that this function is smooth (that is, it has first order derivatives — their values, however, are
usually not calculated or used).

Therefore parametric approximations give as a result an approximated model that can be written down in the
form of an analytical function (regression function). The coefficients of this function £, f, ..., A are found
using the least squares method. L is the number of the regression function members (coefficients). A regression
function that has linear coefficients £, may be written as

P(x) = Yo Bigi(x) + € (27)

where ¢— noise added to the response, (variance), usually it is assumed that it corresponds to the normal
distribution with the mean value zero and constant variance. In the subsequent formulas ¢ will not be used in
obvious form.

Note. Bold symbols everywhere signify vectors or matrices. x signifies a vector column that consists of the
input variables xi, X2, ..., Xm.

6.1. Polynomial approximations

The simplest and the most frequently used parametric approximations are polynomials with m variables.
KEDRO uses first, second and third order polynomials.

The number of members L for a first degree (linear function) polynomial with m variables (factors) is m+1,
for a second degree (quadratic) it is (m+1)(m+2)/2, for third degree polynomial L = (m+1)(m+2)(m+3)/6.
The minimal number of experiment runs necessary to implement polynomial approximation is equal to the
number of the regression function members L. Experimental designs for which the number of runs is equal to
the number of the regression function coefficients, are called saturated designs. The minimal number of
members may be used only if it is clearly known that the experiment response model really consists of
polynomial functions of input variables and does not contain noise (are determined).

In practice saturated designs are almost never used, especially if the result of the response to be measured
contains random or systematic error. Approximation with second degree polynomials historically is called the
Response Surface Method (RSM), it is most frequently used in various type of engineering calculations. In
this case practical experience shows that the number of runs for the approximation of physical experiment
data must be 1.5 - 2 times greater than the minimal possible number of runs, that is, 1.5x(m +1)(m +2)/2 to (m
+1)(m +2). It must be noted that in the case when the response function is difficult to approximate with second
degree polynomials, increasing the number of runs using the same regression function does not lead to
significant improvement of the approximation (reduction of the approximation prediction error).
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Finding regression function coefficients that give the best correspondence to the experiment results usually is
carried out using the Least squares method (LSM). The sum of the quadratic deviation @

OB =X (v; — Xios ,Bigi(xj))z (28)

IS minimized, where y1, yo,..., yn — registered responses n in the experiment points X;.
The minimization of the total quadratic deviation is carried out by equating the partial derivatives % to zero.

Since the coefficients £ in the quadratic deviation function are quadratic, then after equating the derivatives
to zero a system of linear equations is obtained — once it is solved, the coefficient values are obtained that give
the best fit of the regression function to the experimental data.

6.2. Non-parametric approximations

Non-parametric approximations are approximations for which the result — the mathematical model — may not
be written down in the form of an analytical function. From the class of non-parametric approximations,
KEDRO uses locally-weighted polynomial approximations and kriging.

6.3. Mathematical foundation for locally-weighted polynomial approximations

In locally-weighted approximation, for each point of the experimental space x*, where the user wants to find
out the value of the predicted response y(x*), the quadratic deviation function is minimized, weighing the
deviations from the experimentally obtained values depending on the distance of the specific experimental
point x; from the point of interest x* :

o(B) = Ty k(l|x — ;D (v — Ty Bigi(x;))” @

where u = | x*— xj|| — distance in scaled Euclid space [-1, 1]™ between points x* and X; , x(u)— weighing
(that is, kernel) function. It is possible to use different weighting functions whose main property is the
following: for x (0) they assume maximum values, k(u) decreases as the distance u increases. In function
smoothing theory weights are chosen so that f_wm k(u)du = 1, for weighted polynomial approximations this
condition is not significant. For classic weighing functions the parameter of distance value is also used — once
it is exceeded, the weighing function returns the value zero. This is called bandwidth, usually defining it by
the so-called number of nearest neighbors. Points that are not included in the set of nearest x* neighbors, are
not taken into account when predicting the value y(x*). The most popular kernel functions are shown in the
table:

Table Popular kernel functions

Kernel Equation

Uniform ko(u) = él (Ju|] < 1)
Epanechnikov  ky(u) = —: (1—u?)1(jul <1)
Biweight ko(u) = % (1- uz)")l (Ju| <1)
Triweight k3(u) = 3—3 (1- 11.2)3 1(Jul <1)
Gaussian ko(u) = v% exp (—3‘_;)
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In practice, the following weighing function with adjustable degree used by KEDRO has proved to be very
easy and good to use [1]:

ke (u) = exp(—au?) (30)

This weighing function does not require setting the bandwidth (number of nearest neighbors) — it is
automatically reduced if the coefficient « is increased.

6.4. Kriging method

One of the non-parametric methods that is used more and more frequently, is kriging. The name of the method
derives from the name of the South African mining engineer D.G. Krige, who created this method in the
middle of the 20" century and used it for prediction of mineral deposits. Approximately at the same time this
method was also proposed by L. S. Gandin, using it in meteorology. This high precision method views the
response function as the implementation of a stochastic process. The mathematic form of the method is the
following:

y(x) = 1(x) +2(x), (31)

where y(x) is the evaluation of the unknown response function, f(x) is a known, usually polynomial function

of arguments x and z(x) is an implementation for the stochastic process with a zero mean value, variance ¢
and non-zero covariance. Similarly to the polynomial response surface model f(x) determines the “global”
behavior of the model in the experimental region. Frequently instead of f(x) a constant is used — the mean
value of the response surface in the experimental points.

Most frequently the spatial correlation function z(x) is used, for which

cov[Z(xi),Z(xj)]=GZR(Xi,Xj), (32)

where o2 is process variance, R is n x n size correlation matrix whose elements R(xi, X;) express the correlation
between the experimental design points xi and X;. The correlation function is usually chosen by the user. For
this purpose different functions may be used, but KEDRO uses the most frequently used Gauss correlation
function:

R(x;,%;) = | [exp(=0(x; —x;)") (39
k=1

with p = 2 and m parameters 6, one for each dimension. Optimal parameter values for each approximation
case are found, using the cross-validation method.

Kriging in many cases gives very precise approximations that are more precise than those given by other
methods. This method has great advantages for strongly non-linear response functions. Another advantage of
the method is the fact that according to the original assumptions it is relatively simple to calculate the possible
prediction error, assuming some fixed confidence interval, for example, 95%.

However, the method also has its drawbacks. The most important —the method is quite labor intensive. Finding
the parameters 6, using the cross-validation or the maximum likeliness method, is a minimization task with m
variables. For each run of this minimization calculation the inversion of a n x n correlation matrix is necessary.
This matrix in some cases may become singular, if in the experimental design some points are close to one
another. Problems have been identified for some factorial designs and central composite designs. This method
interpolates the results — in the experimental points the value of the prediction coincides with the registered
response value (or its mean value, if the runs are repeated).
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Appendix 1.

Entering analytical expressions in the KEDRO program

The program KEDRO allows entering analytical expression in several places.

Calculation of User Defined Function allows to calculate the response function values, using analytical expressions
— this is useful for testing the program and training the users.

To implement this possibility, the user must indicate the order number of the response function Y in the spinedit window
and enter an analytical expression for an arbitrary function in edit window. The expression may contain factors X1,
X2,..,Xm, where m is the number of factors, as well as constants and functions that are interrelated with operators that
are listed below.

In order to calculate values for the indicated response function, the user must press the button "Calculate". Afterwards
the expression for the next response function may be entered. When exiting the form by pressing the button “OK”, all
the entered response functions are assigned the calculated values.

In the optimization window the expressions may be entered in the criterion and the constraint columns. In these places
in addition to the input variables X1, X2,.., Xm the expressions may also contain the approximated response function
designations Y1, Y2, ...,Y12

Operators list

Operand comment example
+ addition x1+x2
- subtraction x1-x2
* multiplication x1*x2
/ division x1/x2
n power X1"x2
Functions list
abbreviation comment example
abs absolute abs(-10)
arccos arccosine arccos(1)
arcsin arcsine arcsin(1)
arctg arctangent arctg(2)
cos cosine c0s(0.5)
cosec cosecant cosec(l1)
ctg cotangent ctg(3.5)
exp exponent exp(2)
In logarithm to the base e In(2.718)
log10 logarithm to the base 10 log10(1000)
neg negative neg(-1)
pi pi pi()
random random (Range: Integer)
returns random number
X within the range
0 <= X < Range.
If Range is not specified,
the result is a real-type
random number within
the range 0 <= X < 1. random(); random(5)
sec secant sec(1)
sin sine sin(0.5)
sqrt square root sqrt(4)
sum sum of args sum(1,2)
tg tangent tg(0.4)
int integer part of real variable int(1.91) result=1.0



